Department of Computer Science, Washington State University, Pullman, WA 99164.
IEEE Trans Pattern Anal Mach Intell. 1984 May;6(5):639-45. doi: 10.1109/tpami.1984.4767578.
Definitions of 3-D digital surface and plane are introduced. Many geometric properties of these objects are examined. In particular, it is shown that digital convexity is neither a necessary nor a sufficient condition for a digital surface element to be a convex digital plane element, but it is both necessary and sufficient for a digital surface to be a digital plane. Also algorithms are presented to determine whether or not a finite set of digital points is a (convex) digital plane element.
介绍了三维数字曲面和平面的定义。研究了这些对象的许多几何性质。特别地,证明了数字凸性既不是数字曲面元素成为凸数字平面元素的必要条件,也不是充分条件,但对于数字曲面成为数字平面来说,数字凸性既是必要条件,也是充分条件。还提出了算法来确定有限个数字点集是否为(凸)数字平面元素。