Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA.
Neuroimage. 2012 Jan 16;59(2):1218-27. doi: 10.1016/j.neuroimage.2011.08.014. Epub 2011 Aug 16.
Chemical exchange between water and labile protons from amino-acids, proteins and other molecules can be exploited to provide tissue contrast with magnetic resonance imaging (MRI) techniques. Using an off-resonance Spin-Locking (SL) scheme for signal preparation is advantageous because the image contrast can be tuned to specific exchange rates by adjusting SL pulse parameters. While the amide-proton transfer (APT) contrast is obtained optimally with steady-state preparation, using a low power and long irradiation pulse, image contrast from the faster amine-water proton exchange (APEX) is optimized in the transient state with a higher power and a shorter SL pulse. Our phantom experiments show that the APEX contrast is sensitive to protein and amino acid concentration, as well as pH. In vivo 9.4-T SL MRI data of rat brains with irradiation parameters optimized to slow exchange rates have a sharp peak at 3.5 ppm and also broad peak at -2 to -5 ppm, inducing negative contrast in APT-weighted images, while the APEX image has large positive signal resulting from a weighted summation of many different amine-groups. Brain ischemia induced by cardiac arrest decreases pure APT signal from ~1.7% to ~0%, and increases the APEX signal from ~8% to ~16%. In the middle cerebral artery occlusion (MCAO) model, the APEX signal shows different spatial and temporal patterns with large inter-animal variations compared to APT and water diffusion maps. Because of the similarity between the chemical exchange saturation transfer (CEST) and SL techniques, APEX contrast can also be obtained by a CEST approach using similar irradiation parameters. APEX may provide useful information for many diseases involving a change in levels of proteins, peptides, amino-acids, or pH, and may serve as a sensitive neuroimaging biomarker.
水与氨基酸、蛋白质和其他分子中不稳定质子的化学交换可用于提供磁共振成像(MRI)技术的组织对比度。使用离共振自旋锁定(SL)方案进行信号制备是有利的,因为通过调整 SL 脉冲参数可以将图像对比度调谐到特定的交换速率。虽然酰胺质子转移(APT)对比度在稳态制备中获得最佳效果,使用低功率和长照射脉冲,但在瞬态下使用更高的功率和更短的 SL 脉冲,更快的胺-水质子交换(APEX)的图像对比度达到最佳。我们的幻影实验表明,APEX 对比度对蛋白质和氨基酸浓度以及 pH 值敏感。在优化为慢交换率的辐射参数的大鼠脑的体内 9.4-T SL MRI 数据中,在 3.5 ppm 处有一个尖锐的峰,并且在-2 到-5 ppm 处也有一个宽峰,在 APT 加权图像中诱导负对比度,而 APEX 图像具有大的正信号,这是由于许多不同的胺基团的加权总和。心脏骤停引起的脑缺血使纯 APT 信号从约 1.7%降至约 0%,并使 APEX 信号从约 8%增加至约 16%。在大脑中动脉闭塞(MCAO)模型中,与 APT 和水扩散图相比,APEX 信号具有不同的空间和时间模式,并且具有大的动物间变异性。由于化学交换饱和传递(CEST)和 SL 技术之间的相似性,也可以通过使用类似的辐射参数的 CEST 方法获得 APEX 对比度。APEX 可能为涉及蛋白质、肽、氨基酸或 pH 值水平变化的许多疾病提供有用的信息,并可能作为一种敏感的神经影像学生物标志物。