Suppr超能文献

磁共振成像的胺质子交换 (APEX) 依赖对比。

Magnetic resonance imaging of the Amine-Proton EXchange (APEX) dependent contrast.

机构信息

Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA.

出版信息

Neuroimage. 2012 Jan 16;59(2):1218-27. doi: 10.1016/j.neuroimage.2011.08.014. Epub 2011 Aug 16.

Abstract

Chemical exchange between water and labile protons from amino-acids, proteins and other molecules can be exploited to provide tissue contrast with magnetic resonance imaging (MRI) techniques. Using an off-resonance Spin-Locking (SL) scheme for signal preparation is advantageous because the image contrast can be tuned to specific exchange rates by adjusting SL pulse parameters. While the amide-proton transfer (APT) contrast is obtained optimally with steady-state preparation, using a low power and long irradiation pulse, image contrast from the faster amine-water proton exchange (APEX) is optimized in the transient state with a higher power and a shorter SL pulse. Our phantom experiments show that the APEX contrast is sensitive to protein and amino acid concentration, as well as pH. In vivo 9.4-T SL MRI data of rat brains with irradiation parameters optimized to slow exchange rates have a sharp peak at 3.5 ppm and also broad peak at -2 to -5 ppm, inducing negative contrast in APT-weighted images, while the APEX image has large positive signal resulting from a weighted summation of many different amine-groups. Brain ischemia induced by cardiac arrest decreases pure APT signal from ~1.7% to ~0%, and increases the APEX signal from ~8% to ~16%. In the middle cerebral artery occlusion (MCAO) model, the APEX signal shows different spatial and temporal patterns with large inter-animal variations compared to APT and water diffusion maps. Because of the similarity between the chemical exchange saturation transfer (CEST) and SL techniques, APEX contrast can also be obtained by a CEST approach using similar irradiation parameters. APEX may provide useful information for many diseases involving a change in levels of proteins, peptides, amino-acids, or pH, and may serve as a sensitive neuroimaging biomarker.

摘要

水与氨基酸、蛋白质和其他分子中不稳定质子的化学交换可用于提供磁共振成像(MRI)技术的组织对比度。使用离共振自旋锁定(SL)方案进行信号制备是有利的,因为通过调整 SL 脉冲参数可以将图像对比度调谐到特定的交换速率。虽然酰胺质子转移(APT)对比度在稳态制备中获得最佳效果,使用低功率和长照射脉冲,但在瞬态下使用更高的功率和更短的 SL 脉冲,更快的胺-水质子交换(APEX)的图像对比度达到最佳。我们的幻影实验表明,APEX 对比度对蛋白质和氨基酸浓度以及 pH 值敏感。在优化为慢交换率的辐射参数的大鼠脑的体内 9.4-T SL MRI 数据中,在 3.5 ppm 处有一个尖锐的峰,并且在-2 到-5 ppm 处也有一个宽峰,在 APT 加权图像中诱导负对比度,而 APEX 图像具有大的正信号,这是由于许多不同的胺基团的加权总和。心脏骤停引起的脑缺血使纯 APT 信号从约 1.7%降至约 0%,并使 APEX 信号从约 8%增加至约 16%。在大脑中动脉闭塞(MCAO)模型中,与 APT 和水扩散图相比,APEX 信号具有不同的空间和时间模式,并且具有大的动物间变异性。由于化学交换饱和传递(CEST)和 SL 技术之间的相似性,也可以通过使用类似的辐射参数的 CEST 方法获得 APEX 对比度。APEX 可能为涉及蛋白质、肽、氨基酸或 pH 值水平变化的许多疾病提供有用的信息,并可能作为一种敏感的神经影像学生物标志物。

相似文献

1
Magnetic resonance imaging of the Amine-Proton EXchange (APEX) dependent contrast.
Neuroimage. 2012 Jan 16;59(2):1218-27. doi: 10.1016/j.neuroimage.2011.08.014. Epub 2011 Aug 16.
6
Chemical-exchange-sensitive MRI of amide, amine and NOE at 9.4 T versus 15.2 T.
NMR Biomed. 2017 Sep;30(9). doi: 10.1002/nbm.3740. Epub 2017 May 22.
10
In vivo pH mapping with omega plot-based quantitative chemical exchange saturation transfer MRI.
Magn Reson Med. 2023 Jan;89(1):299-307. doi: 10.1002/mrm.29444. Epub 2022 Sep 11.

引用本文的文献

3
Mitochondrial oxidative phosphorylation capacity in skeletal muscle measured by ultrafast Z-spectroscopy (UFZ) MRI at 3T.
Magn Reson Med. 2025 Mar;93(3):1273-1284. doi: 10.1002/mrm.30354. Epub 2024 Oct 20.
5
Multimodal imaging evaluation of early neurological deterioration following acute ischemic stroke.
Quant Imaging Med Surg. 2024 Jul 1;14(7):4763-4778. doi: 10.21037/qims-24-153. Epub 2024 Jun 27.
6
Amide proton transfer MRI at 9.4 T for differentiating tissue acidosis in a rodent model of ischemic stroke.
Magn Reson Med. 2024 Nov;92(5):2140-2148. doi: 10.1002/mrm.30194. Epub 2024 Jun 23.
7
Whole-cerebrum guanidino and amide CEST mapping at 3 T by a 3D stack-of-spirals gradient echo acquisition.
Magn Reson Med. 2024 Oct;92(4):1456-1470. doi: 10.1002/mrm.30134. Epub 2024 May 15.
8
Investigation of relayed nuclear Overhauser enhancement effect at -1.6 ppm in an ischemic stroke model.
Quant Imaging Med Surg. 2023 Dec 1;13(12):7879-7892. doi: 10.21037/qims-23-510. Epub 2023 Oct 25.
9
Dual contrast CEST MRI for pH-weighted imaging in stroke.
Magn Reson Med. 2024 Jan;91(1):357-367. doi: 10.1002/mrm.29842. Epub 2023 Oct 5.
10
Longitudinal multiparametric MRI of traumatic spinal cord injury in animal models.
Magn Reson Imaging. 2023 Oct;102:184-200. doi: 10.1016/j.mri.2023.06.007. Epub 2023 Jun 19.

本文引用的文献

2
Chemical exchange saturation transfer (CEST): what is in a name and what isn't?
Magn Reson Med. 2011 Apr;65(4):927-48. doi: 10.1002/mrm.22761. Epub 2011 Feb 17.
3
Z-spectroscopy with Alternating-Phase Irradiation.
J Magn Reson. 2010 Dec;207(2):242-50. doi: 10.1016/j.jmr.2010.09.004. Epub 2010 Sep 15.
4
Change of the cerebrospinal fluid volume during brain activation investigated by T(1rho)-weighted fMRI.
Neuroimage. 2010 Jul 15;51(4):1378-83. doi: 10.1016/j.neuroimage.2010.03.047. Epub 2010 Mar 22.
5
Magnetization transfer phenomenon in the human brain at 7 T.
Neuroimage. 2010 Jan 1;49(1):272-81. doi: 10.1016/j.neuroimage.2009.08.022. Epub 2009 Aug 14.
6
Reduced hippocampal glutamate in Alzheimer disease.
Neurobiol Aging. 2011 May;32(5):802-10. doi: 10.1016/j.neurobiolaging.2009.05.002. Epub 2009 Jun 6.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验