Suppr超能文献

脑激活时脑脊液容量变化的 T(1rho)-加权 fMRI 研究。

Change of the cerebrospinal fluid volume during brain activation investigated by T(1rho)-weighted fMRI.

机构信息

Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA.

出版信息

Neuroimage. 2010 Jul 15;51(4):1378-83. doi: 10.1016/j.neuroimage.2010.03.047. Epub 2010 Mar 22.

Abstract

A voxel in MRI often contains tissue as well as cerebrospinal fluid (CSF). During functional stimulation, volume fractions of these different water compartments may change. To directly image the CSF volume fraction and measure its functional change, we utilized a rotating-frame longitudinal relaxation time (T(1rho))-weighted MRI technique. At 9.4T with a spin-locking frequency of approximately 500Hz, T(1rho) of tissue water and CSF are about 48 and 450ms, respectively. Therefore, the parenchyma signal becomes negligible when a long spin-locking time (e.g., 200ms) is applied, leaving only the CSF signal. Baseline CSF volume fraction (V(csf)) and its change induced by visual stimulation were mapped in isoflurane-anesthetized cats (n=6). In both T(1rho)-weighted fMRI with spin locking times of 200 and 300ms, negative changes with similar magnitudes were observed, indicating that a decrease in V(csf) is a dominant contributor. In the region with voxels containing the visual cortex and CSF compartments, an average baseline V(csf) was 24.6+/-2%, an average CSF volume fraction change (DeltaV(csf)/V(csf)) was -2.45+/-0.6%, and an absolute change in CSF volume fraction (DeltaV(csf)) was -0.6+/-0.15%. A negative correlation was observed between pixel-wise baseline V(csf) and DeltaV(csf)/V(csf), which can be explained by similar DeltaV(csf) among voxels. Our results suggest that the functional reduction of CSF volume fraction could contribute to fMRI signals, especially when the tissue signal is significantly reduced as compared to the CSF with certain experimental techniques or parameters.

摘要

MRI 中的体素通常包含组织和脑脊液(CSF)。在功能刺激期间,这些不同水隔室的体积分数可能会发生变化。为了直接成像 CSF 体积分数并测量其功能变化,我们利用了旋转框架纵向弛豫时间(T(1rho))加权 MRI 技术。在 9.4T 下,使用约 500Hz 的自旋锁定频率,组织水和 CSF 的 T(1rho)分别约为 48 和 450ms。因此,当应用长自旋锁定时间(例如 200ms)时,实质信号变得可以忽略不计,只剩下 CSF 信号。在异氟烷麻醉的猫中(n=6),映射了基线 CSF 体积分数(V(csf))及其在视觉刺激下的变化。在自旋锁定时间为 200 和 300ms 的 T(1rho)加权 fMRI 中,观察到具有相似幅度的负变化,表明 V(csf)的减少是主要贡献者。在包含视觉皮层和 CSF 隔室的体素区域中,平均基线 V(csf)为 24.6+/-2%,平均 CSF 体积分数变化(DeltaV(csf)/V(csf))为-2.45+/-0.6%,CSF 体积分数的绝对变化(DeltaV(csf))为-0.6+/-0.15%。观察到像素级基线 V(csf)与 DeltaV(csf)/V(csf)之间存在负相关,这可以用类似的 DeltaV(csf)来解释。我们的结果表明,CSF 体积分数的功能减少可能会导致 fMRI 信号,特别是在与某些实验技术或参数相比,组织信号明显减少时。

相似文献

1
Change of the cerebrospinal fluid volume during brain activation investigated by T(1rho)-weighted fMRI.
Neuroimage. 2010 Jul 15;51(4):1378-83. doi: 10.1016/j.neuroimage.2010.03.047. Epub 2010 Mar 22.
2
Functional MRI study with conductivity signal changes during visual stimulation.
J Neurosci Methods. 2024 Dec;412:110288. doi: 10.1016/j.jneumeth.2024.110288. Epub 2024 Sep 19.
3
Observation of bi-exponential T(1ρ) relaxation of in-vivo rat muscles at 3T.
Acta Radiol. 2012 Jul;53(6):675-81. doi: 10.1258/ar.2012.120108. Epub 2012 Jul 3.
4
A simple approach for three-dimensional mapping of baseline cerebrospinal fluid volume fraction.
Magn Reson Med. 2011 Feb;65(2):385-91. doi: 10.1002/mrm.22705. Epub 2010 Nov 30.
5
Functional changes in CSF volume estimated using measurement of water T2 relaxation.
Magn Reson Med. 2009 Mar;61(3):579-86. doi: 10.1002/mrm.21897.
8
Improved cortical-layer specificity of vascular space occupancy fMRI with slab inversion relative to spin-echo BOLD at 9.4 T.
Neuroimage. 2008 Mar 1;40(1):59-67. doi: 10.1016/j.neuroimage.2007.11.045. Epub 2007 Dec 8.
9
Characterization of non-hemodynamic functional signal measured by spin-lock fMRI.
Neuroimage. 2013 Sep;78:385-95. doi: 10.1016/j.neuroimage.2013.04.045. Epub 2013 Apr 22.

引用本文的文献

1
2
Differentiating BOLD and non-BOLD signals in fMRI time series using cross-cortical depth delay patterns.
bioRxiv. 2024 Dec 26:2024.12.26.628516. doi: 10.1101/2024.12.26.628516.
3
Multicompartment imaging of the brain using a comprehensive MR imaging protocol.
Neuroimage. 2024 Sep;298:120800. doi: 10.1016/j.neuroimage.2024.120800. Epub 2024 Aug 17.
4
Non-invasive perfusion MR imaging of the human brain via breath-holding.
Sci Rep. 2024 Mar 27;14(1):7322. doi: 10.1038/s41598-024-58086-8.
6
Neural activity induced by sensory stimulation can drive large-scale cerebrospinal fluid flow during wakefulness in humans.
PLoS Biol. 2023 Mar 30;21(3):e3002035. doi: 10.1371/journal.pbio.3002035. eCollection 2023 Mar.
7
Cerebral blood volume sensitive layer-fMRI in the human auditory cortex at 7T: Challenges and capabilities.
PLoS One. 2023 Feb 9;18(2):e0280855. doi: 10.1371/journal.pone.0280855. eCollection 2023.
9
Effects of mild hypoxia on oxygen extraction fraction responses to brain stimulation.
J Cereb Blood Flow Metab. 2021 Sep;41(9):2216-2228. doi: 10.1177/0271678X21992896. Epub 2021 Feb 9.
10
Comparison of BOLD and CBV using 3D EPI and 3D GRASE for cortical layer functional MRI at 7 T.
Magn Reson Med. 2020 Dec;84(6):3128-3145. doi: 10.1002/mrm.28347. Epub 2020 Jun 18.

本文引用的文献

1
Functional changes in CSF volume estimated using measurement of water T2 relaxation.
Magn Reson Med. 2009 Mar;61(3):579-86. doi: 10.1002/mrm.21897.
2
A functional magnetic resonance imaging technique based on nulling extravascular gray matter signal.
J Cereb Blood Flow Metab. 2009 Jan;29(1):144-56. doi: 10.1038/jcbfm.2008.96. Epub 2008 Aug 27.
3
3D TrueFISP imaging of mouse brain at 4.7T and 9.4T.
J Magn Reson Imaging. 2008 Aug;28(2):497-503. doi: 10.1002/jmri.21449.
4
VASO-based calculations of CBV change: accounting for the dynamic CSF volume.
Magn Reson Med. 2008 Feb;59(2):308-15. doi: 10.1002/mrm.21427.
5
Theoretical and experimental investigation of the VASO contrast mechanism.
Magn Reson Med. 2006 Dec;56(6):1261-73. doi: 10.1002/mrm.21072.
6
Source of nonlinearity in echo-time-dependent BOLD fMRI.
Magn Reson Med. 2006 Jun;55(6):1281-90. doi: 10.1002/mrm.20918.
7
T1rho Dispersion profile of rat tissues in vitro at very low locking fields.
Magn Reson Imaging. 2006 Apr;24(3):295-9. doi: 10.1016/j.mri.2005.04.011. Epub 2006 Feb 2.
10
T1rho-weighted MRI using a surface coil to transmit spin-lock pulses.
J Magn Reson. 2004 Apr;167(2):306-16. doi: 10.1016/j.jmr.2004.01.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验