University of Copenhagen, The Faculty of Life Sciences, Department of Basic Sciences and Environment, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark.
J Chromatogr A. 2011 Oct 7;1218(40):7094-104. doi: 10.1016/j.chroma.2011.07.057. Epub 2011 Aug 6.
A tiered approach is proposed for the discovery of unknown anionic and nonionic polyfluorinated alkyl surfactants (PFASs) by reversed phase ultra high performance liquid chromatography (UHPLC)--negative electrospray ionisation--quadrupole time of flight mass spectrometry (UHPLC-ESI(-)-QTOF-MS). The chromatographic separation, ionisation and detection of PFASs mixtures, was achieved at high pH (pH=9.7) with NH(4)OH as additive. To distinguish PFASs from other chemicals we used the characteristic negative mass defects of PFASs, their specific losses of 20 Da (HF) and the presence of series of chromatographic peaks, belonging to homologues series with m/z of n×50 Da (CF(2)) or n×100 Da (CF(2)CF(2)). The elemental composition of the precursor ions were deducted from the accurate m/z values of the deprotonated molecules M-H. In case of in-source fragmentation, the presence of dimers, e.g. M(2)-H and adduct ions such as M-H+solvent and (M-H)(M-H+Na)(n) were used to confirm the identity of the precursor ions. In relation to quantification of PFASs, we discuss how their surfactancy influence the ESI processes, challenge their handling in solution and choices of precursor-to-product ions for MSMS of e.g., structural PFAS isomers. The method has been used to discover PFASs in industrial blends and in extracts from food contact materials.
提出了一种分层方法,用于通过反相超高效液相色谱(UHPLC)-负离子电喷雾电离-四极杆飞行时间质谱(UHPLC-ESI(-)-QTOF-MS)发现未知的阴离子和非离子全氟烷基表面活性剂(PFAS)。在高 pH(pH=9.7)条件下,使用 NH(4)OH 作为添加剂,实现了 PFAS 混合物的色谱分离、离子化和检测。为了将 PFAS 与其他化学品区分开来,我们使用了 PFAS 的特征负质量缺陷、其 20 Da(HF)的特定损失以及一系列色谱峰的存在,这些峰属于 m/z 为 n×50 Da(CF(2)) 或 n×100 Da(CF(2)CF(2)) 的同系物系列。前体离子的元素组成是从去质子分子 M-H的准确 m/z 值中推断出来的。在源内碎裂的情况下,使用二聚体,例如 M(2)-H和加合物离子,例如 M-H+溶剂和 (M-H)(M-H+Na)(n),来确认前体离子的身份。关于 PFAS 的定量,我们讨论了它们的表面活性剂如何影响 ESI 过程,挑战了它们在溶液中的处理方式以及对 MSMS 的前体到产物离子的选择,例如,结构 PFAS 异构体。该方法已用于发现工业混合物和食品接触材料提取物中的 PFAS。