Suppr超能文献

一种在高效液相色谱中进行程序升温的通用策略——分段温度梯度的预测。

A general strategy for performing temperature-programming in high performance liquid chromatography--prediction of segmented temperature gradients.

机构信息

Institut für Energie und Umwelttechnik e. V., Bliersheimer Strasse 58-60, 47229 Duisburg, Germany.

出版信息

J Chromatogr A. 2011 Sep 28;1218(39):6898-906. doi: 10.1016/j.chroma.2011.08.022. Epub 2011 Aug 16.

Abstract

In the present work it is shown that the linear elution strength (LES) model which was adapted from temperature-programming gas chromatography (GC) can also be employed to predict retention times for segmented-temperature gradients based on temperature-gradient input data in liquid chromatography (LC) with high accuracy. The LES model assumes that retention times for isothermal separations can be predicted based on two temperature gradients and is employed to calculate the retention factor of an analyte when changing the start temperature of the temperature gradient. In this study it was investigated whether this approach can also be employed in LC. It was shown that this approximation cannot be transferred to temperature-programmed LC where a temperature range from 60°C up to 180°C is investigated. Major relative errors up to 169.6% were observed for isothermal retention factor predictions. In order to predict retention times for temperature gradients with different start temperatures in LC, another relationship is required to describe the influence of temperature on retention. Therefore, retention times for isothermal separations based on isothermal input runs were predicted using a plot of the natural logarithm of the retention factor vs. the inverse temperature and a plot of the natural logarithm of the retention factor vs. temperature. It could be shown that a plot of lnk vs. T yields more reliable isothermal/isocratic retention time predictions than a plot of lnk vs. 1/T which is usually employed. Hence, in order to predict retention times for temperature-gradients with different start temperatures in LC, two temperature gradient and two isothermal measurements have been employed. In this case, retention times can be predicted with a maximal relative error of 5.5% (average relative error: 2.9%). In comparison, if the start temperature of the simulated temperature gradient is equal to the start temperature of the input data, only two temperature-gradient measurements are required. Under these conditions, retention times can be predicted with a maximal relative error of 4.3% (average relative error: 2.2%). As an example, the systematic method development for an isothermal as well as a temperature gradient separation of selected sulfonamides by means of the adapted LES model is demonstrated using a pure water mobile phase. Both methods are compared and it is shown that the temperature-gradient separation provides some advantages over the isothermal separation in terms of limits of detection and analysis time.

摘要

在本工作中,我们证明了线性洗脱强度(LES)模型,该模型源自程序升温气相色谱(GC),也可以用于基于液相色谱(LC)中温度梯度输入数据以高精度预测分段温度梯度的保留时间。LES 模型假设恒温分离的保留时间可以基于两个温度梯度来预测,并用于计算温度梯度起始温度变化时分析物的保留因子。在本研究中,研究了这种方法是否也可以用于 LC。结果表明,该近似不能转移到程序升温 LC 中,其中研究的温度范围为 60°C 至 180°C。对于恒温保留因子预测,观察到高达 169.6%的主要相对误差。为了预测具有不同起始温度的温度梯度的保留时间,需要另一个关系来描述温度对保留的影响。因此,基于等温输入运行的等温分离的保留时间是通过保留因子的自然对数与逆温度的关系图和保留因子的自然对数与温度的关系图来预测的。结果表明,lnk 与 T 的关系图比通常使用的 lnk 与 1/T 的关系图更能可靠地预测等温/等度保留时间。因此,为了预测 LC 中具有不同起始温度的温度梯度的保留时间,采用了两个温度梯度和两个等温测量。在这种情况下,可以以最大相对误差 5.5%(平均相对误差:2.9%)预测保留时间。相比之下,如果模拟温度梯度的起始温度等于输入数据的起始温度,则仅需要两个温度梯度测量。在这些条件下,可以以最大相对误差 4.3%(平均相对误差:2.2%)预测保留时间。作为示例,使用纯水流动相通过适应的 LES 模型展示了对选定磺胺类药物的等温分离和温度梯度分离的系统方法开发。比较了这两种方法,并表明在检测限和分析时间方面,温度梯度分离比等温分离具有一些优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验