Suppr超能文献

前沿:缺乏 LAG-3 时加速的自身免疫性糖尿病。

Cutting edge: accelerated autoimmune diabetes in the absence of LAG-3.

机构信息

Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.

出版信息

J Immunol. 2011 Oct 1;187(7):3493-8. doi: 10.4049/jimmunol.1100714. Epub 2011 Aug 26.

Abstract

Lymphocyte activation gene-3 (LAG-3; CD223) is a CD4 homolog that is required for maximal regulatory T cell function and for the control of CD4(+) and CD8(+) T cell homeostasis. Lag3(-)(/)(-) NOD mice developed substantially accelerated diabetes with 100% incidence. Adoptive transfer experiments revealed that LAG-3 was primarily responsible for limiting the pathogenic potential of CD4(+) T cells and, to a lesser extent, CD8(+) T cells. Lag3(-)(/)(-) mice exhibited accelerated, invasive insulitis, corresponding to increased CD4(+) and CD8(+) T cell islet infiltration and intraislet proliferation. The frequencies of islet Ag-reactive chromogranin A-specific CD4(+) T cells and islet specific glucose-6-phosphatase-specific CD8(+) T cells were significantly increased in the islets of Lag3(-)(/)(-) mice, suggesting an early expansion of pathogenic clones that is normally restrained by LAG-3. We conclude that LAG-3 is necessary for regulating CD4(+) and CD8(+) T cell function during autoimmune diabetes, and thus may contribute to limiting autoimmunity in disease-prone environments.

摘要

淋巴细胞激活基因 3(LAG-3;CD223)是一种 CD4 同源物,对于调节性 T 细胞的最大功能以及 CD4(+)和 CD8(+)T 细胞的稳态控制是必需的。Lag3(-)(/)(-)NOD 小鼠的糖尿病发病速度明显加快,发病率为 100%。过继转移实验表明,LAG-3 主要负责限制 CD4(+)T 细胞的致病潜能,而对 CD8(+)T 细胞的作用则较小。Lag3(-)(/)(-)小鼠出现了加速、侵袭性胰岛炎,相应地增加了 CD4(+)和 CD8(+)T 细胞胰岛浸润和胰岛内增殖。Lag3(-)(/)(-)小鼠胰岛中胰岛抗原反应性嗜铬粒 A 特异性 CD4(+)T 细胞和胰岛特异性葡萄糖-6-磷酸酶特异性 CD8(+)T 细胞的频率显著增加,表明致病性克隆的早期扩张,而这种扩张通常受到 LAG-3 的限制。我们得出结论,LAG-3 对于调节自身免疫性糖尿病期间的 CD4(+)和 CD8(+)T 细胞功能是必需的,因此可能有助于限制易患疾病环境中的自身免疫。

相似文献

1
Cutting edge: accelerated autoimmune diabetes in the absence of LAG-3.
J Immunol. 2011 Oct 1;187(7):3493-8. doi: 10.4049/jimmunol.1100714. Epub 2011 Aug 26.
3
Cutting Edge: Nonobese Diabetic Mice Deficient in Chromogranin A Are Protected from Autoimmune Diabetes.
J Immunol. 2016 Jan 1;196(1):39-43. doi: 10.4049/jimmunol.1501190. Epub 2015 Nov 25.
9
CD8(+) T cells specific for beta cells encounter their cognate antigens in the islets of NOD mice.
Eur J Immunol. 2009 Oct;39(10):2716-24. doi: 10.1002/eji.200939408.
10
Regulatory CD4 T cells redirected against pathogenic CD8 T cells protect NOD mice from development of autoimmune diabetes.
Front Immunol. 2024 Sep 16;15:1463971. doi: 10.3389/fimmu.2024.1463971. eCollection 2024.

引用本文的文献

1
Therapeutic potential of targeting LAG-3 in cancer.
J Immunother Cancer. 2025 Jul 8;13(7):e011652. doi: 10.1136/jitc-2025-011652.
2
The inhibitory receptor LAG3 affects NK cell IFN-γ production through glycolysis and the PSAT1/STAT1/IFNG pathway.
mBio. 2025 Jun 11;16(6):e0023025. doi: 10.1128/mbio.00230-25. Epub 2025 Apr 29.
3
Advances in LAG3 cancer immunotherapeutics.
Trends Cancer. 2025 Jan;11(1):37-48. doi: 10.1016/j.trecan.2024.10.009. Epub 2024 Nov 26.
4
LAG-3-An incompletely understood target in cancer therapy.
FASEB J. 2024 Nov 30;38(22):e70190. doi: 10.1096/fj.202401639R.
5
Autoimmune CD4 T cells fine-tune TCF1 expression to maintain function and survive persistent antigen exposure during diabetes.
Immunity. 2024 Nov 12;57(11):2583-2596.e6. doi: 10.1016/j.immuni.2024.09.016. Epub 2024 Oct 12.
7
Inhibitory co-receptor Lag3 supports Foxp3 regulatory T cell function by restraining Myc-dependent metabolic programming.
Immunity. 2024 Nov 12;57(11):2634-2650.e5. doi: 10.1016/j.immuni.2024.08.008. Epub 2024 Sep 4.
9
Chronic immune-related adverse events arising from immune checkpoint inhibitors: an update.
J Immunother Cancer. 2024 Jul 4;12(7):e008591. doi: 10.1136/jitc-2023-008591.
10
A potential defensive role of TIM-3 on T lymphocytes in the inflammatory involvement of diabetic kidney disease.
Front Immunol. 2024 May 15;15:1365226. doi: 10.3389/fimmu.2024.1365226. eCollection 2024.

本文引用的文献

1
PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice.
J Exp Med. 2011 Feb 14;208(2):395-407. doi: 10.1084/jem.20100466. Epub 2011 Feb 7.
2
Immune cell crosstalk in type 1 diabetes.
Nat Rev Immunol. 2010 Jul;10(7):501-13. doi: 10.1038/nri2787.
3
Regulatory T cells and inhibitory cytokines in autoimmunity.
Curr Opin Immunol. 2009 Dec;21(6):612-8. doi: 10.1016/j.coi.2009.09.011. Epub 2009 Oct 23.
4
T cell islet accumulation in type 1 diabetes is a tightly regulated, cell-autonomous event.
Immunity. 2009 Oct 16;31(4):643-53. doi: 10.1016/j.immuni.2009.07.008. Epub 2009 Oct 8.
5
How punctual ablation of regulatory T cells unleashes an autoimmune lesion within the pancreatic islets.
Immunity. 2009 Oct 16;31(4):654-64. doi: 10.1016/j.immuni.2009.08.023. Epub 2009 Oct 8.
6
Tracking epitope-specific T cells.
Nat Protoc. 2009;4(4):565-81. doi: 10.1038/nprot.2009.9.
7
LAG-3 regulates plasmacytoid dendritic cell homeostasis.
J Immunol. 2009 Feb 15;182(4):1885-91. doi: 10.4049/jimmunol.0800185.
8
Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection.
Nat Immunol. 2009 Jan;10(1):29-37. doi: 10.1038/ni.1679. Epub 2008 Nov 30.
9
Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction.
Immunity. 2008 May;28(5):687-97. doi: 10.1016/j.immuni.2008.03.016. Epub 2008 May 8.
10
The NOD mouse: a model for insulin-dependent diabetes mellitus.
Curr Protoc Immunol. 2001 May;Chapter 15:15.9.1-15.9.23. doi: 10.1002/0471142735.im1509s24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验