Suppr超能文献

人类胚胎干细胞中的动态染色质状态揭示了与多能性相关的潜在调控序列和基因。

Dynamic chromatin states in human ES cells reveal potential regulatory sequences and genes involved in pluripotency.

机构信息

Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research,University of California, San Diego School of Medicine, La Jolla, CA 92093-0653, USA.

出版信息

Cell Res. 2011 Oct;21(10):1393-409. doi: 10.1038/cr.2011.146. Epub 2011 Aug 30.

Abstract

Pluripotency, the ability of a cell to differentiate and give rise to all embryonic lineages, defines a small number of mammalian cell types such as embryonic stem (ES) cells. While it has been generally held that pluripotency is the product of a transcriptional regulatory network that activates and maintains the expression of key stem cell genes, accumulating evidence is pointing to a critical role for epigenetic processes in establishing and safeguarding the pluripotency of ES cells, as well as maintaining the identity of differentiated cell types. In order to better understand the role of epigenetic mechanisms in pluripotency, we have examined the dynamics of chromatin modifications genome-wide in human ES cells (hESCs) undergoing differentiation into a mesendodermal lineage. We found that chromatin modifications at promoters remain largely invariant during differentiation, except at a small number of promoters where a dynamic switch between acetylation and methylation at H3K27 marks the transition between activation and silencing of gene expression, suggesting a hierarchy in cell fate commitment over most differentially expressed genes. We also mapped over 50 000 potential enhancers, and observed much greater dynamics in chromatin modifications, especially H3K4me1 and H3K27ac, which correlate with expression of their potential target genes. Further analysis of these enhancers revealed potentially key transcriptional regulators of pluripotency and a chromatin signature indicative of a poised state that may confer developmental competence in hESCs. Our results provide new evidence supporting the role of chromatin modifications in defining enhancers and pluripotency.

摘要

多能性是指细胞分化并产生所有胚胎谱系的能力,它定义了少数哺乳动物细胞类型,如胚胎干细胞 (ES) 细胞。虽然普遍认为多能性是转录调控网络的产物,该网络激活并维持关键干细胞基因的表达,但越来越多的证据表明,表观遗传过程在建立和保护 ES 细胞的多能性以及维持分化细胞类型的身份方面起着关键作用。为了更好地理解表观遗传机制在多能性中的作用,我们研究了人类胚胎干细胞 (hESCs) 在分化为中胚层谱系过程中全基因组染色质修饰的动态变化。我们发现,除了少数启动子外,启动子处的染色质修饰在分化过程中基本保持不变,在这些启动子中,H3K27 上的乙酰化和甲基化之间的动态转换标志着基因表达的激活和沉默之间的转变,这表明在大多数差异表达基因中细胞命运决定存在一个层次结构。我们还绘制了超过 50000 个潜在的增强子,并观察到染色质修饰(尤其是 H3K4me1 和 H3K27ac)的动态变化更大,这与它们潜在靶基因的表达相关。对这些增强子的进一步分析揭示了多能性的潜在关键转录调节剂和染色质特征,表明其处于一种可能赋予 hESCs 发育能力的静止状态。我们的研究结果提供了新的证据,支持染色质修饰在定义增强子和多能性中的作用。

相似文献

1
Dynamic chromatin states in human ES cells reveal potential regulatory sequences and genes involved in pluripotency.
Cell Res. 2011 Oct;21(10):1393-409. doi: 10.1038/cr.2011.146. Epub 2011 Aug 30.
2
A unique chromatin signature uncovers early developmental enhancers in humans.
Nature. 2011 Feb 10;470(7333):279-83. doi: 10.1038/nature09692. Epub 2010 Dec 15.
3
Distinct epigenomic landscapes of pluripotent and lineage-committed human cells.
Cell Stem Cell. 2010 May 7;6(5):479-91. doi: 10.1016/j.stem.2010.03.018.
4
Dual roles of histone H3 lysine 9 acetylation in human embryonic stem cell pluripotency and neural differentiation.
J Biol Chem. 2015 Jan 23;290(4):2508-20. doi: 10.1074/jbc.M114.603761. Epub 2014 Dec 17.
5
REST maintains self-renewal and pluripotency of embryonic stem cells.
Nature. 2008 May 8;453(7192):223-7. doi: 10.1038/nature06863. Epub 2008 Mar 23.
6
Global identification of transcriptional regulators of pluripotency and differentiation in embryonic stem cells.
Nucleic Acids Res. 2012 Sep 1;40(17):8199-209. doi: 10.1093/nar/gks584. Epub 2012 Jun 22.
7
Epigenetic landscaping during hESC differentiation to neural cells.
Stem Cells. 2009 Jun;27(6):1298-308. doi: 10.1002/stem.59.
9
Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation.
Genome Res. 2008 Sep;18(9):1433-45. doi: 10.1101/gr.078378.108. Epub 2008 Jun 18.
10
Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells.
Nature. 2015 Feb 19;518(7539):413-6. doi: 10.1038/nature13981. Epub 2014 Dec 10.

引用本文的文献

1
Schlank orchestrates insect developmental transition by switching H3K27 acetylation to trimethylation in the prothoracic gland.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2401861121. doi: 10.1073/pnas.2401861121. Epub 2024 Aug 21.
2
The Interplay between T Cells and Cancer: The Basis of Immunotherapy.
Genes (Basel). 2023 Apr 28;14(5):1008. doi: 10.3390/genes14051008.
3
Regulation of Oct4 in stem cells and neural crest cells.
Birth Defects Res. 2022 Oct 1;114(16):983-1002. doi: 10.1002/bdr2.2007. Epub 2022 Apr 1.
4
Epigenetic Regulation of the Wnt/β-Catenin Signaling Pathway in Cancer.
Front Genet. 2021 Sep 6;12:681053. doi: 10.3389/fgene.2021.681053. eCollection 2021.
5
Metabolic Regulation of Epigenetic Modifications and Cell Differentiation in Cancer.
Cancers (Basel). 2020 Dec 16;12(12):3788. doi: 10.3390/cancers12123788.
6
Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials.
Signal Transduct Target Ther. 2019 Dec 17;4:62. doi: 10.1038/s41392-019-0095-0. eCollection 2019.
7
Rewiring the Epigenetic Networks in -Rearranged Leukemias: Epigenetic Dysregulation and Pharmacological Interventions.
Front Cell Dev Biol. 2019 May 15;7:81. doi: 10.3389/fcell.2019.00081. eCollection 2019.
8
Enhancer Chromatin and 3D Genome Architecture Changes from Naive to Primed Human Embryonic Stem Cell States.
Stem Cell Reports. 2019 May 14;12(5):1129-1144. doi: 10.1016/j.stemcr.2019.04.004. Epub 2019 May 2.
9
Anchor: trans-cell type prediction of transcription factor binding sites.
Genome Res. 2019 Feb;29(2):281-292. doi: 10.1101/gr.237156.118. Epub 2018 Dec 19.
10
Epigenetic analyses of planarian stem cells demonstrate conservation of bivalent histone modifications in animal stem cells.
Genome Res. 2018 Oct;28(10):1543-1554. doi: 10.1101/gr.239848.118. Epub 2018 Aug 24.

本文引用的文献

2
Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA.
Nature. 2011 May 15;474(7351):390-4. doi: 10.1038/nature10006.
3
Control of the embryonic stem cell state.
Cell. 2011 Mar 18;144(6):940-54. doi: 10.1016/j.cell.2011.01.032.
4
PU.1 and C/EBP(alpha) synergistically program distinct response to NF-kappaB activation through establishing monocyte specific enhancers.
Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5290-5. doi: 10.1073/pnas.1017214108. Epub 2011 Mar 14.
5
A unique chromatin signature uncovers early developmental enhancers in humans.
Nature. 2011 Feb 10;470(7333):279-83. doi: 10.1038/nature09692. Epub 2010 Dec 15.
6
Transcriptional regulatory networks in embryonic stem cells.
Prog Drug Res. 2011;67:239-52. doi: 10.1007/978-3-7643-8989-5_12.
7
Histone H3K27ac separates active from poised enhancers and predicts developmental state.
Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21931-6. doi: 10.1073/pnas.1016071107. Epub 2010 Nov 24.
8
Molecular signals of epigenetic states.
Science. 2010 Oct 29;330(6004):612-6. doi: 10.1126/science.1191078.
9
Epigenetic modifications in pluripotent and differentiated cells.
Nat Biotechnol. 2010 Oct;28(10):1079-88. doi: 10.1038/nbt.1684.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验