College of Power and Energy Engineering, Harbin Engineering University, Harbin, People's Republic of China.
J Acoust Soc Am. 2011 Aug;130(2):807-17. doi: 10.1121/1.3605534.
A Fourier series method is proposed for the acoustic analysis of a rectangular cavity with impedance boundary conditions arbitrarily specified on any of the walls. The sound pressure is expressed as the combination of a three-dimensional Fourier cosine series and six supplementary two-dimensional expansions introduced to ensure (accelerate) the uniform and absolute convergence (rate) of the series representation in the cavity including the boundary surfaces. The expansion coefficients are determined using the Rayleigh-Ritz method. Since the pressure field is constructed adequately smooth throughout the entire solution domain, the Rayleigh-Ritz solution is mathematically equivalent to what is obtained from a strong formulation based on directly solving the governing equations and the boundary conditions. To unify the treatments of arbitrary nonuniform impedance boundary conditions, the impedance distribution function on each specified surface is invariantly expressed as a double Fourier series expansion so that all the relevant integrals can be calculated analytically. The modal parameters for the acoustic cavity can be simultaneously obtained from solving a standard matrix eigenvalue problem instead of iteratively solving a nonlinear transcendental equation as in the existing methods. Several numerical examples are presented to demonstrate the effectiveness and reliability of the current method for various impedance boundary conditions, including nonuniform impedance distributions.
本文提出了一种傅里叶级数方法,用于分析任意壁面上具有阻抗边界条件的矩形腔的声学问题。声压表示为三维傅里叶余弦级数和六个补充二维展开的组合,这些展开用于确保(加速)在包括边界表面的腔中的级数表示的均匀和绝对收敛(速率)。扩展系数由瑞利-里兹方法确定。由于压力场在整个求解域内构建得足够光滑,因此瑞利-里兹解在数学上等同于从基于直接求解控制方程和边界条件的强公式得到的解。为了统一处理任意非均匀阻抗边界条件,将每个指定表面上的阻抗分布函数不变地表示为双傅里叶级数展开,以便可以对所有相关积分进行解析计算。可以通过求解标准矩阵特征值问题同时获得声学腔的模态参数,而不是像现有方法那样通过迭代求解非线性超越方程。本文提出了一种傅里叶级数方法,用于分析任意壁面上具有阻抗边界条件的矩形腔的声学问题。声压表示为三维傅里叶余弦级数和六个补充二维展开的组合,这些展开用于确保(加速)在包括边界表面的腔中的级数表示的均匀和绝对收敛(速率)。扩展系数由瑞利-里兹方法确定。由于压力场在整个求解域内构建得足够光滑,因此瑞利-里兹解在数学上等同于从基于直接求解控制方程和边界条件的强公式得到的解。为了统一处理任意非均匀阻抗边界条件,将每个指定表面上的阻抗分布函数不变地表示为双傅里叶级数展开,以便可以对所有相关积分进行解析计算。可以通过求解标准矩阵特征值问题同时获得声学腔的模态参数,而不是像现有方法那样通过迭代求解非线性超越方程。
本文提出了一种用于分析任意壁面上具有阻抗边界条件的矩形腔声学问题的傅里叶级数方法。声压表示为三维傅里叶余弦级数和六个补充二维展开的组合,这些展开用于确保(加速)在包括边界表面的腔中的级数表示的均匀和绝对收敛(速率)。扩展系数由瑞利-里兹方法确定。由于压力场在整个求解域内构建得足够光滑,因此瑞利-里兹解在数学上等同于从基于直接求解控制方程和边界条件的强公式得到的解。为了统一处理任意非均匀阻抗边界条件,将每个指定表面上的阻抗分布函数不变地表示为双傅里叶级数展开,以便可以对所有相关积分进行解析计算。可以通过求解标准矩阵特征值问题同时获得声学腔的模态参数,而不是像现有方法那样通过迭代求解非线性超越方程。