Suppr超能文献

将清晰度指数扩展到考虑降噪算法引入的非线性失真。

Extending the articulation index to account for non-linear distortions introduced by noise-suppression algorithms.

机构信息

Department of Electrical Engineering, University of Texas at Dallas Richardson, TX 75083-0688, USA.

出版信息

J Acoust Soc Am. 2011 Aug;130(2):986-95. doi: 10.1121/1.3605668.

Abstract

The conventional articulation index (AI) measure cannot be applied in situations where non-linear operations are involved and additive noise is present. This is because the definitions of the target and masker signals become vague following non-linear processing, as both the target and masker signals are affected. The aim of the present work is to modify the basic form of the AI measure to account for non-linear processing. This was done using a new definition of the output or effective SNR obtained following non-linear processing. The proposed output SNR definition for a specific band was designed to handle cases where the non-linear processing affects predominantly the target signal rather than the masker signal. The proposed measure also takes into consideration the fact that the input SNR in a specific band cannot be improved following any form of non-linear processing. Overall, the proposed measure quantifies the proportion of input band SNR preserved or transmitted in each band after non-linear processing. High correlation (r = 0.9) was obtained with the proposed measure when evaluated with intelligibility scores obtained by normal-hearing listeners in 72 noisy conditions involving noise-suppressed speech corrupted in four different real-world maskers.

摘要

传统的可懂度指数(AI)测量方法不能应用于涉及非线性运算和存在附加噪声的情况。这是因为在非线性处理后,目标和掩蔽信号的定义变得模糊,因为两者都受到影响。本工作的目的是修改 AI 测量的基本形式,以考虑非线性处理。这是通过使用非线性处理后获得的输出或有效 SNR 的新定义来实现的。针对特定频带提出的输出 SNR 定义旨在处理非线性处理主要影响目标信号而不是掩蔽信号的情况。所提出的措施还考虑到这样一个事实,即在任何形式的非线性处理之后,特定频带中的输入 SNR 都无法提高。总体而言,所提出的措施量化了非线性处理后每个频带中输入频带 SNR 保留或传输的比例。在所评估的 72 种噪声条件下,包括在四种不同的实际掩蔽噪声中受到噪声抑制的语音失真的情况下,与正常听力者的可懂度得分相比,所提出的措施具有很高的相关性(r=0.9)。

相似文献

6
Perceptual effects of noise reduction by time-frequency masking of noisy speech.
J Acoust Soc Am. 2012 Oct;132(4):2690-9. doi: 10.1121/1.4747006.
8
An algorithm that improves speech intelligibility in noise for normal-hearing listeners.
J Acoust Soc Am. 2009 Sep;126(3):1486-94. doi: 10.1121/1.3184603.
9
The effect of speech modification on non-native listeners for matrix-style sentences.
J Acoust Soc Am. 2015 Feb;137(2):EL151-7. doi: 10.1121/1.4905878.
10
Predicting the intelligibility of vocoded speech.
Ear Hear. 2011 May-Jun;32(3):331-8. doi: 10.1097/AUD.0b013e3181ff3515.

引用本文的文献

1
En route to sound coding strategies for optical cochlear implants.
iScience. 2023 Aug 25;26(10):107725. doi: 10.1016/j.isci.2023.107725. eCollection 2023 Oct 20.

本文引用的文献

1
Methods and applications of the audibility index in hearing aid selection and fitting.
Trends Amplif. 2002 Sep;6(3):81-129. doi: 10.1177/108471380200600302.
2
Reasons why current speech-enhancement algorithms do not improve speech intelligibility and suggested solutions.
IEEE Trans Audio Speech Lang Process. 2011;19(1):47-56. doi: 10.1109/TASL.2010.2045180.
3
Understanding compression: modeling the effects of dynamic-range compression in hearing aids.
Int J Audiol. 2010 Jun;49(6):395-409. doi: 10.3109/14992020903426256.
4
An algorithm that improves speech intelligibility in noise for normal-hearing listeners.
J Acoust Soc Am. 2009 Sep;126(3):1486-94. doi: 10.1121/1.3184603.
6
The concept of signal-to-noise ratio in the modulation domain and speech intelligibility.
J Acoust Soc Am. 2008 Dec;124(6):3937-46. doi: 10.1121/1.3001713.
7
Digital noise reduction: outcomes from laboratory and field studies.
Int J Audiol. 2008 Aug;47(8):447-60. doi: 10.1080/14992020802033091.
8
A new sound coding strategy for suppressing noise in cochlear implants.
J Acoust Soc Am. 2008 Jul;124(1):498-509. doi: 10.1121/1.2924131.
9
A comparative intelligibility study of single-microphone noise reduction algorithms.
J Acoust Soc Am. 2007 Sep;122(3):1777. doi: 10.1121/1.2766778.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验