Khurana Lakshay, Harczos Tamas, Moser Tobias, Jablonski Lukasz
Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany.
Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany.
iScience. 2023 Aug 25;26(10):107725. doi: 10.1016/j.isci.2023.107725. eCollection 2023 Oct 20.
Hearing loss is the most common human sensory deficit. Severe-to-complete sensorineural hearing loss is often treated by electrical cochlear implants (eCIs) bypassing dysfunctional or lost hair cells by direct stimulation of the auditory nerve. The wide current spread from each intracochlear electrode array contact activates large sets of tonotopically organized neurons limiting spectral selectivity of sound coding. Despite many efforts, an increase in the number of independent eCI stimulation channels seems impossible to achieve. Light, which can be better confined in space than electric current may help optical cochlear implants (oCIs) to overcome eCI shortcomings. In this review, we present the current state of the optogenetic sound encoding. We highlight optical sound coding strategy development capitalizing on the optical stimulation that requires fine-grained, fast, and power-efficient real-time sound processing controlling dozens of microscale optical emitters as an emerging research area.
听力损失是人类最常见的感觉缺陷。重度至极重度感音神经性听力损失通常通过电子耳蜗植入(eCIs)进行治疗,该方法通过直接刺激听神经来绕过功能失调或丧失的毛细胞。每个耳蜗内电极阵列触点产生的广泛电流扩散会激活大量按音调组织的神经元,从而限制了声音编码的频谱选择性。尽管付出了很多努力,但似乎不可能增加独立的电子耳蜗植入刺激通道的数量。与电流相比,光在空间上可以更好地被限制,这可能有助于光学耳蜗植入(oCIs)克服电子耳蜗植入的缺点。在这篇综述中,我们介绍了光遗传学声音编码的现状。我们强调利用光刺激开发光学声音编码策略,这需要精细、快速且高效节能的实时声音处理来控制数十个微尺度光发射器,这是一个新兴的研究领域。