Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, Netherlands Proteomics Centre and Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.
J Biol Chem. 2011 Oct 28;286(43):37280-91. doi: 10.1074/jbc.M111.284059. Epub 2011 Aug 30.
The cystathionine β-synthase module of OpuA in conjunction with an anionic membrane surface acts as a sensor of internal ionic strength, which allows the protein to respond to osmotic stress. We now show by chemical modification and cross-linking studies that CBS2-CBS2 interface residues are critical for transport activity and/or ionic regulation of transport, whereas CBS1 serves no functional role. We establish that Cys residues in CBS1, CBS2, and the nucleotide-binding domain are more accessible for cross-linking at high than low ionic strength, indicating that these domains undergo conformational changes when transiting between the active and inactive state. Structural analyses suggest that the cystathionine β-synthase module is largely unstructured. Moreover, we could substitute CBS1 by a linker and preserve ionic regulation of transport. These data suggest that CBS1 serves as a linker and the structured CBS2-CBS2 interface forms a hinge point for ionic strength-dependent rearrangements that are transmitted to the nucleotide-binding domain and thereby affect translocation activity.
OpuA 中的胱硫醚 β-合酶模块与阴离子膜表面结合,充当内部离子强度的传感器,使蛋白质能够对渗透压应激做出反应。我们现在通过化学修饰和交联研究表明,CBS2-CBS2 界面残基对于转运活性和/或转运的离子调节至关重要,而 CBS1 没有功能作用。我们确定 CBS1、CBS2 和核苷酸结合域中的半胱氨酸残基在高离子强度下比在低离子强度下更易于交联,这表明这些结构域在从活性状态向非活性状态转变时会发生构象变化。结构分析表明,胱硫醚 β-合酶模块在很大程度上没有结构。此外,我们可以用接头替代 CBS1 并保留对转运的离子调节。这些数据表明,CBS1 充当接头,而具有结构的 CBS2-CBS2 界面形成一个铰链点,用于离子强度依赖性的重排,这些重排传递到核苷酸结合域,从而影响易位活性。