Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050016, People's Republic of China.
J Phys Chem A. 2011 Oct 13;115(40):11057-66. doi: 10.1021/jp206835m. Epub 2011 Sep 16.
The complexes OCS···C(6)H(6), C(6)H(6)···Rg, and OCS···C(6)H(6)···Rg (Rg = He, Ne, Ar, and Kr) have been studied by means of MP2 calculations and QTAIM analyses. The optimized geometries of the title complexes have C(6v) symmetry. The intermolecular interactions in the OCS···C(6)H(6)···Rg complexes are comparatively stronger than that in the OCS···C(6)H(6) complex, which prove that the He, Ne, Ar, and Kr atoms have the ability to form weak bonds with the benzene molecule. In QTAIM studies, the π-electron density of benzene was separated from the total electron density. The molecular graphs and topological parameters of the OCS···πC(6)H(6), πC(6)H(6)···Rg, and OCS···πC(6)H(6)···Rg complexes indicate that the interactions are mainly attributed to the electron density provided by the π-bonding electrons of benzene and the top regions of the S and Rg atoms. Charge transfer is observed from the benzene molecule to SCO/Rg in the formation of the OCS···C(6)H(6), C(6)H(6)···Rg, and OCS···C(6)H(6)···Rg complexes. Molecular electrostatic potential (MEP) analyses suggest that the electrostatic energy plays a pivotal role in these intermolecular interactions.
OCS···C(6)H(6)、C(6)H(6)···Rg 和 OCS···C(6)H(6)···Rg(Rg = He、Ne、Ar 和 Kr)复合物已通过 MP2 计算和 QTAIM 分析进行了研究。标题复合物的优化几何形状具有 C(6v) 对称性。OCS···C(6)H(6)···Rg 复合物中的分子间相互作用比 OCS···C(6)H(6)复合物中的相互作用要强,这证明 He、Ne、Ar 和 Kr 原子具有与苯分子形成弱键的能力。在 QTAIM 研究中,从总电子密度中分离出苯的π-电子密度。OCS···πC(6)H(6)、πC(6)H(6)···Rg 和 OCS···πC(6)H(6)···Rg 复合物的分子图和拓扑参数表明,相互作用主要归因于苯的π键合电子和 S 和 Rg 原子的顶部区域提供的电子密度。在 OCS···C(6)H(6)、C(6)H(6)···Rg 和 OCS···C(6)H(6)···Rg 复合物的形成过程中观察到从苯分子到 SCO/Rg 的电荷转移。分子静电势(MEP)分析表明,静电能在这些分子间相互作用中起着关键作用。