Suppr超能文献

高场双氮氧自由基电子顺磁共振(EPR)光谱学在无序固体中生物大分子的三维结构测定中的应用。

High-field dipolar electron paramagnetic resonance (EPR) spectroscopy of nitroxide biradicals for determining three-dimensional structures of biomacromolecules in disordered solids.

机构信息

Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany.

出版信息

J Phys Chem B. 2011 Oct 20;115(41):11950-63. doi: 10.1021/jp206841v. Epub 2011 Sep 27.

Abstract

We consider the state-of-the-art capabilities and future perspectives of electron-spin triangulation by high-field/high-frequency dipolar electron paramagnetic resonance (EPR) techniques designed for determining the three-dimensional structure of large supra-molecular complexes dissolved in disordered solids. These techniques combine double site-directed spin labeling (SDSL) with orientation-resolving pulsed electron-electron double resonance (PELDOR) spectroscopy. In particular, we appraise the prospects of angular triangulation, which extends the more familiar distance triangulation. As a model case for spin-labeled proteins, the three-dimensional structures of two nitroxide biradicals with rather stiff bridging blocks and deuterated nitroxide headgroups have been derived. To this end we applied 95 GHz high-field electron dipolar EPR spectroscopy with the microwave pulse-sequence configurations for PELDOR and relaxation-induced dipolar modulation enhancement (RIDME). Various specific spectroscopic strategies are discussed to overcome the problems of overlapping spectra of the chemically identical nitroxide labels when attached to macromolecular systems. We conclude that due to the high detection sensitivity and spectral resolution the combination of SDSL with high-field RIDME/PELDOR stands out as an extremely powerful tool for 3D structure determination of large disordered systems. The approach compares favorably with other structure-determining magnetic-resonance methods. This holds true both for stable and transient radical-pair states. Angular constraints are provided in addition to distance constraints obtained for the same sample. Thereby, the number of necessary distance constraints is strongly reduced. Since each measurement of a distance constraint requires an additional doubly spin-labeled sample, the reduction of necessary distance constraints is another appealing aspect of orientation-resolving EPR spin triangulation for protein structure determination.

摘要

我们考虑了通过高场/高频偶极电子顺磁共振(EPR)技术进行电子自旋三角测量的最新技术,并将其应用于确定溶解在无序固体中的大型超分子复合物的三维结构。这些技术结合了双定点自旋标记(SDSL)和具有取向分辨的脉冲电子-电子双共振(PELDOR)光谱学。特别是,我们评估了角度三角测量的前景,它扩展了更为人熟悉的距离三角测量。作为自旋标记蛋白的模型案例,已经推导出了两个带有相当刚性桥接块和氘化氮氧自由基头部的氮氧自由基双自由基的三维结构。为此,我们应用了 95 GHz 高场电子偶极 EPR 光谱学,以及用于 PELDOR 和弛豫诱导偶极调制增强(RIDME)的微波脉冲序列配置。讨论了各种特定的光谱学策略,以克服化学上相同的氮氧自由基标签连接到大分子系统时重叠光谱的问题。我们得出的结论是,由于高检测灵敏度和光谱分辨率,SDSL 与高场 RIDME/PELDOR 的结合是确定大无序系统三维结构的极其强大的工具。该方法与其他确定结构的磁共振方法相比具有优势。这对于稳定和瞬态自由基对态都是如此。除了为同一样品获得的距离约束外,还提供了角度约束。从而大大减少了所需距离约束的数量。由于每个距离约束的测量都需要额外的双自旋标记样品,因此减少所需距离约束是用于蛋白质结构确定的取向分辨 EPR 自旋三角测量的另一个吸引人的方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验