Suppr超能文献

一种面向疾病相关和其他功能研究的直系同源预测的综合方法。

An integrative approach to ortholog prediction for disease-focused and other functional studies.

机构信息

Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.

出版信息

BMC Bioinformatics. 2011 Aug 31;12:357. doi: 10.1186/1471-2105-12-357.

Abstract

BACKGROUND

Mapping of orthologous genes among species serves an important role in functional genomics by allowing researchers to develop hypotheses about gene function in one species based on what is known about the functions of orthologs in other species. Several tools for predicting orthologous gene relationships are available. However, these tools can give different results and identification of predicted orthologs is not always straightforward.

RESULTS

We report a simple but effective tool, the Drosophila RNAi Screening Center Integrative Ortholog Prediction Tool (DIOPT; http://www.flyrnai.org/diopt), for rapid identification of orthologs. DIOPT integrates existing approaches, facilitating rapid identification of orthologs among human, mouse, zebrafish, C. elegans, Drosophila, and S. cerevisiae. As compared to individual tools, DIOPT shows increased sensitivity with only a modest decrease in specificity. Moreover, the flexibility built into the DIOPT graphical user interface allows researchers with different goals to appropriately 'cast a wide net' or limit results to highest confidence predictions. DIOPT also displays protein and domain alignments, including percent amino acid identity, for predicted ortholog pairs. This helps users identify the most appropriate matches among multiple possible orthologs. To facilitate using model organisms for functional analysis of human disease-associated genes, we used DIOPT to predict high-confidence orthologs of disease genes in Online Mendelian Inheritance in Man (OMIM) and genes in genome-wide association study (GWAS) data sets. The results are accessible through the DIOPT diseases and traits query tool (DIOPT-DIST; http://www.flyrnai.org/diopt-dist).

CONCLUSIONS

DIOPT and DIOPT-DIST are useful resources for researchers working with model organisms, especially those who are interested in exploiting model organisms such as Drosophila to study the functions of human disease genes.

摘要

背景

在功能基因组学中,对物种间同源基因的映射起着重要作用,它使研究人员能够根据其他物种中同源物的功能信息,对一种物种中基因功能提出假设。目前已有多种预测同源基因关系的工具,但这些工具可能会给出不同的结果,而且预测同源物的识别并不总是那么直接。

结果

我们报告了一种简单而有效的工具,即 Drosophila RNAi Screening Center Integrative Ortholog Prediction Tool(DIOPT;http://www.flyrnai.org/diopt),用于快速鉴定同源物。DIOPT 整合了现有的方法,便于在人类、小鼠、斑马鱼、秀丽隐杆线虫、果蝇和酿酒酵母之间快速识别同源物。与单个工具相比,DIOPT 的灵敏度有所提高,特异性仅略有下降。此外,DIOPT 图形用户界面中内置的灵活性允许具有不同目标的研究人员适当地“撒网”或限制结果以获得最高置信度的预测。DIOPT 还显示了预测同源物对的蛋白质和结构域比对,包括氨基酸同一性百分比。这有助于用户在多个可能的同源物中识别最合适的匹配。为了促进使用模式生物对与人类疾病相关的基因进行功能分析,我们使用 DIOPT 预测了在线孟德尔遗传数据库(OMIM)中的疾病基因和全基因组关联研究(GWAS)数据集中的基因的高置信度同源物。结果可通过 DIOPT 疾病和特征查询工具(DIOPT-DIST;http://www.flyrnai.org/diopt-dist)获得。

结论

DIOPT 和 DIOPT-DIST 是使用模式生物的研究人员的有用资源,特别是那些有兴趣利用果蝇等模式生物来研究人类疾病基因功能的研究人员。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d08/3179972/976f81af2cab/1471-2105-12-357-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验