Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
J Biol Chem. 2011 Oct 21;286(42):36968-77. doi: 10.1074/jbc.M111.265249. Epub 2011 Aug 31.
Apart from its role in insulin receptor (IR) activation, the C terminus of the B-chain of insulin is also responsible for the formation of insulin dimers. The dimerization of insulin plays an important role in the endogenous delivery of the hormone and in the administration of insulin to patients. Here, we investigated insulin analogues with selective N-methylations of peptide bond amides at positions B24, B25, or B26 to delineate their structural and functional contribution to the dimer interface. All N-methylated analogues showed impaired binding affinities to IR, which suggests a direct IR-interacting role for the respective amide hydrogens. The dimerization capabilities of analogues were investigated by isothermal microcalorimetry. Selective N-methylations of B24, B25, or B26 amides resulted in reduced dimerization abilities compared with native insulin (K(d) = 8.8 μM). Interestingly, although the N-methylation in [NMeTyrB26]-insulin or [NMePheB24]-insulin resulted in K(d) values of 142 and 587 μM, respectively, the [NMePheB25]-insulin did not form dimers even at high concentrations. This effect may be attributed to the loss of intramolecular hydrogen bonding between NHB25 and COA19, which connects the B-chain β-strand to the core of the molecule. The release of the B-chain β-strand from this hydrogen bond lock may result in its higher mobility, thereby shifting solution equilibrium toward the monomeric state of the hormone. The study was complemented by analyses of two novel analogue crystal structures. All examined analogues crystallized only in the most stable R(6) form of insulin oligomers (even if the dimer interface was totally disrupted), confirming the role of R(6)-specific intra/intermolecular interactions for hexamer stability.
除了在胰岛素受体 (IR) 激活中的作用外,胰岛素 B 链的 C 端也负责胰岛素二聚体的形成。胰岛素的二聚化在激素的内源性传递和胰岛素对患者的给药中起着重要作用。在这里,我们研究了胰岛素类似物,它们在位置 B24、B25 或 B26 处的肽键酰胺具有选择性 N-甲基化,以描绘它们对二聚体界面的结构和功能贡献。所有 N-甲基化的类似物对 IR 的结合亲和力都降低了,这表明各自酰胺氢具有直接的 IR 相互作用作用。通过等温微量热法研究了类似物的二聚化能力。与天然胰岛素相比,B24、B25 或 B26 酰胺的选择性 N-甲基化导致二聚化能力降低(Kd = 8.8 μM)。有趣的是,尽管 [NMeTyrB26]-胰岛素或 [NMePheB24]-胰岛素中的 N-甲基化导致 Kd 值分别为 142 和 587 μM,但 [NMePheB25]-胰岛素即使在高浓度下也不能形成二聚体。这种效应可能归因于 NHB25 和 COA19 之间的分子内氢键的丧失,该氢键将 B 链 β-链连接到分子的核心。从这种氢键锁定中释放 B 链 β-链可能导致其更高的流动性,从而使溶液平衡向激素的单体状态转移。该研究通过对两种新型类似物晶体结构的分析得到了补充。所有检查的类似物仅在胰岛素低聚物最稳定的 R(6)形式中结晶(即使二聚体界面完全被破坏),证实了 R(6)-特异性的分子内/分子间相互作用对于六聚体稳定性的作用。