Suppr超能文献

无脊椎动物遗传学和生物学在开发亨廷顿舞蹈病神经保护和预防医学中的价值

Value of Invertebrate Genetics and Biology to Develop Neuroprotective and Preventive Medicine in Huntington’s Disease

作者信息

Neri Christian

Abstract

During the past decade, and genetics have emerged as powerful approaches for the study of cellular responses to neurodegenerative disease proteins. Such studies have provided new strategies and rationales for the development of neuroprotective drugs, such as the pharmacological manipulation of longevity modulator networks. This chapter will describe how and why these model systems may be used as efficient translational research tools for Huntington’s disease (HD) in the discovery and development of neuroprotective drugs. Neurodegenerative diseases, including HD, constitute a large and clinically heterogeneous group of brain illnesses for which there are currently no neuroprotective drugs available. Although important methodologies have been developed by academic and industrial researchers to find therapies for these diseases, notably chemical screening tools, the large majority of the molecules so far evaluated in clinical trials have failed to show significant efficacy. In rodent models, the administration of neurotoxins may reproduce some features of the human diseases (von Bohlen Und Halbach, 2005), and this approach has been used extensively to search for new treatments with some success, such as the use of levodopa for symptomatic treatment of Parkinson’s disease, although with significant side effects (Tse, 2006). However, neuroprotective treatments able to benefit large numbers of patients with minimal side effects have not yet been developed. Thus, to date research in the field of neurodegenerative disease pathogenesis has given limited benefit to patients, and drug discovery and development remain major challenges for industrial and preindustrial research and need to be improved. Drug development is an expensive and time-consuming process that works as a pipeline, with the proof of success being conclusive clinical trials. Although there is a need to improve clinical trial design to evaluate the effects of neuroprotective drugs, improvement may also be needed at the entry points of the pipeline and at critical points along the preclinical discovery process (Hung and Schwarzschild, 2007). With the advent of physiological genomics and network biology, the concepts and paradigms used to study neurodegenerative diseases are rapidly evolving (Feany, 2000; Lim et al., 2006b). Implementing these concepts and paradigms early into the drug development process may strongly enhance the translational infrastructure used to tackle neurodegenerative diseases. The aim of this chapter is to emphasize how and why invertebrate biology may allow new rationale(s) for drug discovery and development to be exploited for the development of new drugs for HD, notably in view of developing neuroprotective and preventive medicines. HD is a dominantly inherited disease caused by expanded polyglutamines (polyQs) in the huntingtin (htt) protein (Figure 6.1) and is clinically characterized by cortical and striatal degeneration accompanied by motor, cognitive, and neuropsychiatric symptoms (Walker, 2007). The toxic effects of polyQ-expanded htt forms and genetic modifiers of cytotoxicity are being studied in several cell systems and in model organisms, including yeast, nematodes, flies, and rodents (Levine et al., 2004; Rubinsztein, 2002; Sipione and Cattaneo, 2001). Thus, a large amount of knowledge is being accumulated on the roles of normal htt and the effects of polyQ-expanded htt at the neuronal cell level. There are also great efforts being made to collect detailed clinical data in a normalized manner (e.g., see http://www.euro-hd.net) and to characterize large cohorts of HD patients and presymptomatic individuals. Thus, HD has become a “model disease” to define the best ways to fight neuronal dysfunction and neurodegeneration in the brain and to improve drug discovery, which may foster the identification of a cure for this disease and perhaps other degenerative diseases.

摘要

在过去十年中,遗传学和[此处原文缺失内容]已成为研究细胞对神经退行性疾病蛋白反应的有力方法。此类研究为神经保护药物的开发提供了新策略和理论依据,比如对寿命调节网络进行药理学调控。本章将阐述如何以及为何这些模型系统可作为亨廷顿舞蹈症(HD)高效的转化研究工具,用于神经保护药物的发现与开发。神经退行性疾病,包括HD,构成了一大类临床异质性脑部疾病,目前尚无可用的神经保护药物。尽管学术和产业研究人员已开发出重要方法来寻找这些疾病的治疗方法,尤其是化学筛选工具,但迄今为止在临床试验中评估的绝大多数分子均未显示出显著疗效。在啮齿动物模型中,给予神经毒素可能重现人类疾病的某些特征(冯·博伦·昂德·哈尔巴赫,2005年),这种方法已被广泛用于寻找新疗法并取得了一定成功,例如使用左旋多巴对症治疗帕金森病,尽管存在显著副作用(谢,2006年)。然而,尚未开发出能使大量患者受益且副作用最小的神经保护疗法。因此,迄今为止神经退行性疾病发病机制领域的研究给患者带来的益处有限,药物发现和开发仍然是产业和非产业研究的重大挑战,需要加以改进。药物开发是一个昂贵且耗时的过程,如同一条流水线,成功的证明是确凿的临床试验。尽管需要改进临床试验设计以评估神经保护药物的效果,但在流水线的入口点以及临床前发现过程的关键点可能也需要改进(洪和施瓦茨施泰因,2007年)。随着生理基因组学和网络生物学的出现,用于研究神经退行性疾病的概念和范式正在迅速演变(费尼,2000年;林等人,2006年b)。在药物开发过程中尽早应用这些概念和范式可能会大力加强用于应对神经退行性疾病的转化基础架构。本章的目的是强调无脊椎动物生物学如何以及为何能为HD新药开发利用药物发现和开发的新理论依据,特别是鉴于开发神经保护和预防药物。HD是一种由亨廷顿蛋白(htt)中多聚谷氨酰胺(polyQ)扩增导致的显性遗传疾病(图6.1),临床特征为皮质和纹状体变性,伴有运动、认知和神经精神症状(沃克,2007年)。多聚Q扩增的htt形式的毒性作用以及细胞毒性的遗传修饰因子正在多种细胞系统和模型生物中进行研究,包括酵母、线虫、果蝇和啮齿动物(莱文等人,2004年;鲁宾斯坦,2002年;西皮奥内和卡塔内奥,2001年)。因此,关于正常htt的作用以及多聚Q扩增的htt在神经元细胞水平的影响,正在积累大量知识。人们也在大力努力以标准化方式收集详细的临床数据(例如,见http://www.euro - hd.net),并对大量HD患者和症状前个体进行特征描述。因此,HD已成为一种“模型疾病”,以确定对抗大脑神经元功能障碍和神经退行性变的最佳方法,并改进药物发现,这可能有助于找到治愈这种疾病以及或许其他退行性疾病的方法。

相似文献

5
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
10
Rodent Models of Huntington's Disease: An Overview.亨廷顿舞蹈症的啮齿动物模型:综述
Biomedicines. 2023 Dec 16;11(12):3331. doi: 10.3390/biomedicines11123331.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验