Jankowski Michael P., Koerber H. Richard
NGF is the most commonly studied growth factor in relation to nociceptor sensitization and serves to promote the survival of DRG neurons during development that express its receptor, trkA (Averill et al. 1995; Huang et al. 2001; Patapoutian and Reichardt 2001). These neurons are generally part of the small and medium diameter DRG population, but some larger cells also express trkA (Wright and Snider 1995; Patapoutian and Reichardt 2001). In addition to its role in development and neuronal survival, it promotes sprouting and regulates innervation density of NGF-responsive neurons in peripheral targets in early post-natal and adult life. For example, it has been shown that ligation of a peripheral nerve induces NGF expression in its target area and these elevated levels are associated with sprouting of adjacent, non-injured afferents into the denervated region (Pertens et al. 1999). Other studies analyzing constitutive overexpression of NGF in the skin (NGF-OEs) report enhanced innervation of the epidermis by both sensory and sympathetic neurons (Albers et al. 1994; Davis et al. 1994, 1996; Goodness et al. 1997). Although NGF appears to be necessary and beneficial for development and maintenance of the peripheral sensory neuron system (Diamond et al. 1992), it has also been shown to participate in the development of thermal and mechanical hyperalgesia (i.e., increased pain in response to normally painful stimuli; Malin et al. 2006; Pertens et al. 1999; Andreev et al. 1995; Lewin et al. 1993) and pain in disorders such as bone cancer and interstitial cystitis (Lowe et al. 1997; Sevcik et al. 2005). Rats chronically treated with NGF are hypersensitive to both mechanical and radiant heat stimulation (Lewin et al. 1993; Andreev et al. 1995; Pertens et al. 1999) in a dose-dependent fashion, and injection of NGF directly into the paw of mice induces a decrease in the paw withdrawal latency to radiant heat (Malin et al. 2006). This NGF sensitization is partially dependent on sympathetic neurons, as sympathectomy partly reduces the effect of NGF in causing hyperalgesia (Andreev et al. 1995). NGF also acts indirectly by activating mast cells and neutrophils, which in turn release additional inflammatory mediators causing hypersensitivity (Lewin et al. 1994; Andreev et al. 1995; Amann et al. 1996; Woolf et al. 1996; Bennett et al. 1998; Bennett 2001). Regardless, it is clear that NGF levels in the target tissue participate in sensitization of nociceptors. For example, NGF-OEs display increases in afferent responses to thermal and mechanical stimulation in a skin-nerve preparation. Stucky and Lewin (1999) found that large diameter Aβ non-nociceptive afferents (typically trkA negative) were unaffected by NGF overexpression, but thermal responsiveness was significantly increased in nociceptive afferents as a result of enhanced cutaneous NGF levels. NGF-sensitive, trkA positive neurons co-label with a variety of other molecules thought to be involved in pain processing. trkA overlaps with neurons containing peptides CGRP and SP (Averill et al. 1995; Molliver and Snider 1997), known mediators of pain behaviors (Koltzenburg et al. 1999; Reeh and Kress 2001; Li et al. 2008) shown to induce hyperalgesia (Oku et al. 1987; Nakamura-Craig and Gill 1991; McMahon, 1996; Sann and Pierau 1998). This population also co-labels with TRPV1, crucial for the development of heat hyperalgesia (Caterina et al. 2000). NGF-induced hyperalgesia may also be mediated by sodium channel, Nav1.8. In mice lacking this channel, NGF does not induce heat hyperalgesia (Kerr et al. 2001), although Nav1.8 knockout mice display indistinguishable thermal thresholds under normal conditions compared to wildtypes (WTs). Since many NGF-responsive neurons contain TRPV1, this channel is suspected of a role in NGF-mediated hypersensitivity (Caterina et al. 1997; Tominaga et al. 1998; Michael and Priestley 1999). Cultured DRG neurons treated with NGF display enhanced inward current in response to application of the TRPV1 agonist capsaicin (Shu and Mendell 1999; Caterina et al. 2000; Zhu et al. 2004). NGF can increase TRPV1 expression (Donnerer et al. 2005; Xue et al. 2007) and promote TRPV1 insertion into the plasma membrane (Zhang et al. 2005). Furthermore, anti-NGF antibodies injected into the hindpaw after peripheral inflammation decrease levels of TRPV1 in DRGs and reduce inflammation-induced hyperalgesia (Ji et al. 2002; Cheng and Ji 2008). Given a clear role for NGF in sensory neuron sensitization and hyperalgesia, anti-NGF treatments may constitute an effective means of treating pain in humans (Anand et al. 1997; Lowe et al. 1997; Saldanha et al. 1999; Sena et al. 2006; Jimenez-Andrade et al. 2007). These hypotheses, however, have not been extensively studied (Abdiche et al. 2008) or verified. Perhaps NGF may only affect a small proportion of nociceptors in the DRG, and other molecules and neurotrophic factors most certainly are involved in hyperalgesia and overall sensory neuron sensitization.
神经生长因子(NGF)是与伤害感受器敏化相关研究最为广泛的生长因子,在发育过程中可促进表达其受体trkA的背根神经节(DRG)神经元存活(Averill等人,1995年;Huang等人,2001年;Patapoutian和Reichardt,2001年)。这些神经元通常是中小直径DRG群体的一部分,但一些较大的细胞也表达trkA(Wright和Snider,1995年;Patapoutian和Reichardt,2001年)。除了在发育和神经元存活中的作用外,它还能促进发芽并调节出生后早期和成年期外周靶标中NGF反应性神经元的神经支配密度。例如,研究表明,外周神经结扎会诱导其靶区域内NGF表达,而这些升高的水平与相邻未受损传入神经向去神经区域的发芽有关(Pertens等人,1999年)。其他分析皮肤中NGF组成性过表达(NGF - OEs)的研究报告称,感觉神经元和交感神经元对表皮的神经支配均增强(Albers等人,1994年;Davis等人,1994年、1996年;Goodness等人,1997年)。尽管NGF似乎对周围感觉神经元系统的发育和维持是必需且有益 的(Diamond等人,1992年),但它也已被证明参与热痛觉过敏和机械性痛觉过敏的发展(即对正常疼痛刺激的疼痛增加;Malin等人,2006年;Pertens等人,1999年;Andreev等人,1995年;Lewin等人,1993年)以及骨癌和间质性膀胱炎等疾病中的疼痛(Lowe等人,1997年;Sevcik等人,2005年)。长期用NGF治疗的大鼠对机械和辐射热刺激均呈剂量依赖性超敏反应(Lewin等人,1993年;Andreev等人,1995年;Pertens等人,1999年),将NGF直接注射到小鼠爪中会导致爪对辐射热的退缩潜伏期缩短(Malin等人,2006年)。这种NGF敏化部分依赖于交感神经元,因为交感神经切除术可部分降低NGF引起痛觉过敏的作用(Andreev等人,1995年)。NGF还通过激活肥大细胞和中性粒细胞间接发挥作用,进而释放其他炎症介质导致超敏反应(Lewin等人,1994年;Andreev等人,1995年;Amann等人,1996年;Woolf等人,1996年;Bennett等人,1998年;Bennett,2001年)。无论如何,很明显靶组织中的NGF水平参与伤害感受器的敏化。例如,在皮肤 - 神经制备中,NGF - OEs对热和机械刺激的传入反应增加。Stucky和Lewin(1999年)发现,大直径Aβ非伤害性传入神经(通常为trkA阴性)不受NGF过表达影响,但由于皮肤NGF水平升高,伤害性传入神经的热反应性显著增加。对NGF敏感的trkA阳性神经元与多种其他被认为参与疼痛处理的分子共同标记。trkA与含有肽CGRP和SP的神经元重叠(Averill等人,1995年;Molliver和Snider,1997年),它们是已知的疼痛行为介质(Koltzenburg等人,1999年;Reeh和Kress,2001年;Li等人,2008年),已被证明可诱导痛觉过敏(Oku等人,1987年;Nakamura - Craig和Gill,1991年;McMahon,1996年;Sann和Pierau,1998年)。这群神经元还与TRPV1共同标记,TRPV1对热痛觉过敏的发展至关重要(Caterina等人,2000年)。NGF诱导的痛觉过敏也可能由钠通道Nav1.8介导。在缺乏该通道的小鼠中,NGF不会诱导热痛觉过敏(Kerr等人,2001年),尽管与野生型(WTs)相比,Nav1.8基因敲除小鼠在正常条件下的热阈值无明显差异。由于许多对NGF有反应的神经元含有TRPV1,因此怀疑该通道在NGF介导的超敏反应中起作用(Caterina等人,1997年;Tominaga等人,1998年;Michael和Priestley,1999年)。用NGF处理的培养DRG神经元在应用TRPV1激动剂辣椒素时显示出增强的内向电流(Shu和Mendell,1999年;Caterina等人,2000年;Zhu等人,2004年)。NGF可增加TRPV1表达(Donnerer等人,2005年;Xue等人,2007年)并促进TRPV1插入质膜(Zhang等人,2005年)。此外,外周炎症后向后爪注射抗NGF抗体可降低DRG中TRPV1水平并减轻炎症诱导的痛觉过敏(Ji等人,2002年;Cheng和Ji,2008年)。鉴于NGF在感觉神经元敏化和痛觉过敏中的明确作用,抗NGF治疗可能构成治疗人类疼痛的有效手段(Anand等人,1997年;Lowe等人,1997年;Saldanha等人,1999年;Sena等人,2006年;Jimenez - Andrade等人,2007年)。然而,这些假设尚未得到广泛研究(Abdiche等人,2008年)或验证。也许NGF可能仅影响DRG中一小部分伤害感受器,并且其他分子和神经营养因子肯定也参与痛觉过敏和整体感觉神经元敏化。