Suppr超能文献

偏心散光系统中的孔径转诊。

Aperture referral in heterocentric astigmatic systems.

机构信息

Department of Optometry, University of Johannesburg, Johannesburg, South Africa.

出版信息

Ophthalmic Physiol Opt. 2011 Nov;31(6):603-14. doi: 10.1111/j.1475-1313.2011.00860.x. Epub 2011 Aug 23.

Abstract

BACKGROUND

Retinal blur patch, effective corneal patch, projective field, field of view and other concepts are usually regarded as disjoint concepts to be treated separately. However they have in common the fact that an aperture, often the pupil of the eye, has its effect at some other longitudinal position. Here the effect is termed aperture referral.

PURPOSE

To develop a complete and general theory of aperture referral under which many ostensibly-distinct aperture-dependent concepts become unified and of which these concepts become particular applications. The theory allows for apertures to be elliptical and decentred and refracting surfaces in an eye or any other optical system to be astigmatic, heterocentric and tilted.

METHODS

The optical model used is linear optics, a three-dimensional generalization of Gaussian optics. Positional and inclinational invariants are defined along a ray through an arbitrary optical system. A pencil of rays through a system is defined by an object or image point and an aperture defines a subset of the pencil called a restricted pencil.

RESULTS

Invariants are derived for four cases: an object and an image point at finite and at infinite distances. Formulae are obtained for the generalized magnification and transverse translation and for the geometry and location of an aperture referred to any other transverse plane.

CONCLUSIONS

A restricted pencil is defined by an aperture and an object or image point. The intersection of the restricted pencil with a transverse plane is the aperture referred to that transverse plane. Many concepts, including effective corneal patch, retinal blur patch, projective field and visual field, can now be treated routinely as special cases of the general theory: having identified the aperture, the referred aperture and the referring point one applies the general formulae directly. The formulae are exact in linear optics, explicit and give insight into relationships.

摘要

背景

视网膜模糊斑、有效角膜斑、投射野、视野等概念通常被视为互不相关的概念,需要分别处理。然而,它们有一个共同的特点,即孔径(通常是眼睛的瞳孔)在其他纵向位置产生影响。在这里,这种影响被称为孔径参照。

目的

提出一个完整而通用的孔径参照理论,在这个理论下,许多表面上不同的孔径相关概念变得统一,这些概念成为特殊的应用。该理论允许孔径为椭圆形和偏心,以及眼睛或任何其他光学系统中的折射表面为像散、异心和倾斜。

方法

所使用的光学模型是线性光学,这是高斯光学的三维推广。在通过任意光学系统的光线中定义位置和倾斜不变量。通过系统的光线束由物点和像点定义,孔径定义了该光线束的子集,称为受限光线束。

结果

推导出了四种情况下的不变量:物点和像点在有限和无限远的情况下。得到了广义放大率和横向平移的公式,以及孔径相对于任何其他横向平面的几何形状和位置的公式。

结论

受限光线束由孔径和物点或像点定义。受限光线束与横向平面的交点是该横向平面的孔径参照。现在,许多概念,包括有效角膜斑、视网膜模糊斑、投射野和视野,都可以作为一般理论的特例来常规处理:确定孔径、参照孔径和参照点后,直接应用一般公式。这些公式在线性光学中是精确的、显式的,并深入了解了各概念之间的关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验