Suppr超能文献

眼的线性光学和光学系统:方法和应用综述。

Linear optics of the eye and optical systems: a review of methods and applications.

机构信息

Department of Optometry, University of Johannesburg, Doornfontein, South Africa.

出版信息

BMJ Open Ophthalmol. 2022 Apr 1;7(1):e000932. doi: 10.1136/bmjophth-2021-000932. eCollection 2022.

Abstract

The purpose of this paper is to review the basic principles of linear optics. A paraxial optical system is represented by a symplectic matrix called the transference, with entries that represent the fundamental properties of a paraxial optical system. Such an optical system may have elements that are astigmatic and decentred or tilted. Nearly all the familiar optical properties of an optical system can be derived from the transference. The transference is readily obtainable, as shown, for Gaussian and astigmatic optical systems, including systems with elements that are decentred or tilted. Four special systems are described and used to obtain the commonly used optical properties including power, refractive compensation, vertex powers, neutralising powers, the generalised Prentice equation and change in vergence across an optical system. The use of linear optics in quantitative analysis and the consequences of symplecticity are discussed. A systematic review produced 84 relevant papers for inclusion in this review on optical properties of linear systems. Topics reviewed include various magnifications (transverse, angular, spectacle, instrument, aniseikonia, retinal blur), cardinal points and axes of the eye, chromatic aberrations, positioning and design of intraocular lenses, flipped, reversed and catadioptric systems and gradient indices. The optical properties are discussed briefly, with emphasis placed on results and their implications. Many of these optical properties have applications for vision science and eye surgery and some examples of using linear optics for quantitative analyses are mentioned.

摘要

本文旨在回顾线性光学的基本原理。傍轴光学系统由一个称为传递的辛矩阵表示,其元素表示傍轴光学系统的基本特性。这样的光学系统可能具有像散和离轴或倾斜的元件。几乎所有光学系统的常见光学性质都可以从传递中推导出来。如所示,对于高斯和像散光学系统,包括离轴或倾斜元件的系统,传递是很容易得到的。描述了四个特殊系统,并用于获得常用的光学性质,包括功率、折射补偿、顶点功率、中和功率、广义普林斯顿方程和光程在光学系统中的变化。讨论了线性光学在定量分析中的应用以及辛的结果。系统综述产生了 84 篇相关论文,包括在这篇关于线性系统光学性质的综述中。综述的主题包括各种放大率(横向、角、眼镜、仪器、像差、视网膜模糊)、眼的基点和轴、色差、眼内透镜的定位和设计、翻转、反转和折反射系统以及梯度指数。简要讨论了光学性质,重点是结果及其意义。其中许多光学性质在视觉科学和眼外科中有应用,并且提到了使用线性光学进行定量分析的一些例子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40a0/8977803/3b486c32fce7/bmjophth-2021-000932f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验