Department of Chemistry and Thomas Young Centre, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
Phys Chem Chem Phys. 2011 Oct 21;13(39):17749-55. doi: 10.1039/c1cp21764j. Epub 2011 Sep 1.
The incorporation of yttrium in bioactive glasses (BGs) could lead to a new generation of radionuclide vectors for cancer therapy, with high biocompatibility, controlled biodegradability and the ability to enhance the growth of new healthy tissues after the treatment with radionuclides. It is essential to assess whether and to what extent yttrium incorporation affects the favourable properties of the BG matrix: ideally, one would like to combine the high surface reactivity typical of BGs with a slow release of radioactive yttrium. Molecular Dynamics simulations show that, compared to a BG composition with the same silica fraction, incorporation of yttrium results in two opposing effects on the glass durability: a more fragmented silicate network (leading to lower durability) and a stronger yttrium-mediated association between separate silicate fragments (leading to higher durability). The simulations also highlight a high site-selectivity and some clustering of yttrium cations, which are likely linked to the observed slow rate of yttrium released from related Y-BG compositions. Optimisation of yttrium BG compositions for radiotherapy applications thus depends on the delicate balance between these effects.
钇在生物活性玻璃(BGs)中的掺入可能会导致新一代用于癌症治疗的放射性核素载体的出现,这些载体具有高生物相容性、可控的生物降解性以及在放射性核素治疗后增强新健康组织生长的能力。评估钇的掺入是否以及在何种程度上影响 BG 基质的有利特性至关重要:理想情况下,人们希望将 BG 典型的高表面反应性与放射性钇的缓慢释放结合起来。分子动力学模拟表明,与具有相同二氧化硅分数的 BG 组成相比,钇的掺入对玻璃耐久性有两种相反的影响:硅酸盐网络的碎片化程度更高(导致耐久性降低)和钇介导的单独硅酸盐碎片之间的更强结合(导致耐久性增加)。模拟还突出了钇阳离子的高位点选择性和一些聚类,这可能与从相关 Y-BG 组合物中观察到的钇释放的缓慢速率有关。因此,用于放射治疗应用的钇 BG 组合物的优化取决于这些效应之间的微妙平衡。