Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland.
J Phys Chem A. 2011 Oct 13;115(40):11067-78. doi: 10.1021/jp207101m. Epub 2011 Sep 19.
This study reports the Raman (FT-Raman) and absorption infrared (FT-IR) spectra, based on calculated wavenumbers and normal modes of vibrations, of the following compounds: L-Leu-D-NH-CH(Me)-PO(3)H(2) (LI), L-Leu-NH-C(Me)(2)-PO(3)H(2) (LII), L-Leu-D-NH-CH(Et)-PO(3)H(2) (LIII), L-Leu-L-NH-CH(Et)-PO(3)H(2) (LIV), L-Leu-L-NH-CH(EtOH)-PO(3)H(2) (LV), L-Leu-NH-C(Me)(Et)-PO(3)H(2) (LVI), L-Leu-L-NH-CH(PrA)-PO(3)H(2) (LVII), L-Leu-L-NH-CH(c-Pr)-PO(3)H(2) (LVIII), L-Leu-L-NH-CH(t-Bu)-PO(3)H(2) (LIX), L-Leu-L-NH-CH(BuA)-PO(3)H(2) (LX), L-Leu-L-NH-CH(c-Bu)-PO(3)H(2) (LXI), and L-Leu-L-NH-C(Adm)-PO(3)H(2) (LXII). The equilibrium geometries and vibrational wavenumbers were calculated using density functional theory (DFT) at the B3LYP, 6-311++G** level using Gaussian 03, Raint, GaussSum 0.8, and Gar2ped software. We briefly compare and analyze the experimental and calculated vibrational wavenumbers in the range 4000-400 cm(-1). In addition, the Raman wavenumbers are compared to those from the surface-enhanced Raman scattering (SERS) spectra for the phosphono analogues of l-leucine (l-Leu) adsorbed on a colloidal silver surface in an aqueous solution. The geometries of these molecules etched on the silver surface were deduced from observed changes in both the intensity and broadness of Raman bands in the spectra of the bound versus free species. For example, LVI appears to adsorb onto the colloidal silver particles mainly through the amine group and amide bond, which assists in the adsorption process, whereas LII shows strongly enhanced SERS bands due to the rocking, twisting, and stretching vibrations of the N(amid)C(sg)(Me)(2)P fragment, suggesting that this peptide's interaction with the silver surface occurs mainly via this fragment. On the other hand, the most dominant SERS bands of LIII and LIV due to the P═O bond stretches reflect P═O···Ag complex formation.
本研究报告了以下化合物的拉曼(FT-Raman)和吸收红外(FT-IR)光谱:L-Leu-D-NH-CH(Me)-PO(3)H(2)(LI)、L-Leu-NH-C(Me)(2)-PO(3)H(2)(LII)、L-Leu-D-NH-CH(Et)-PO(3)H(2)(LIII)、L-Leu-L-NH-CH(Et)-PO(3)H(2)(LIV)、L-Leu-L-NH-CH(EtOH)-PO(3)H(2)(LV)、L-Leu-NH-C(Me)(Et)-PO(3)H(2)(LVI)、L-Leu-L-NH-CH(PrA)-PO(3)H(2)(LVII)、L-Leu-L-NH-CH(c-Pr)-PO(3)H(2)(LVIII)、L-Leu-L-NH-CH(t-Bu)-PO(3)H(2)(LIX)、L-Leu-L-NH-CH(BuA)-PO(3)H(2)(LX)、L-Leu-L-NH-CH(c-Bu)-PO(3)H(2)(LXI)和 L-Leu-L-NH-C(Adm)-PO(3)H(2)(LXII)。使用高斯 03、Rain t、GaussSum 0.8 和 Gar2ped 软件,在密度泛函理论(DFT)B3LYP 水平下,使用 6-311++G**基组计算了平衡几何形状和振动波数。我们简要比较和分析了实验和计算在 4000-400cm(-1) 范围内的振动波数。此外,还将拉曼波数与吸附在胶体银表面的 l-亮氨酸(l-Leu)磷酸酯类似物的表面增强拉曼散射(SERS)光谱中的拉曼波数进行了比较。从观察到的结合态与游离态的拉曼带的强度和宽度变化中推断出这些分子在银表面上的蚀刻几何形状。例如,LVI 似乎主要通过胺基和酰胺键吸附在胶体银颗粒上,这有助于吸附过程,而 LII 由于 N(amid)C(sg)(Me)(2)P 片段的摇摆、扭曲和伸缩振动而表现出强烈增强的 SERS 带,表明该肽与银表面的相互作用主要通过该片段发生。另一方面,LIII 和 LIV 由于 P═O 键拉伸而产生的最主要的 SERS 带反映了 P═O···Ag 络合物的形成。