Suppr超能文献

[胶质肿瘤的组学与生物标志物]

[OMICS and biomarkers of glial tumors].

作者信息

Idbaih A

机构信息

INSERM UMRS 975/CNRS UMR 7225/UPMC, service de neurologie 2-Mazarin, centre de recherche de l'institut du cerveau et de la moelle épinière, groupe hospitalier Pitié-Salpêtrière, AP-HP, 47-83 boulevard de l'Hôpital, Paris cedex 13, France.

出版信息

Rev Neurol (Paris). 2011 Oct;167(10):691-8. doi: 10.1016/j.neurol.2011.07.007. Epub 2011 Sep 1.

Abstract

INTRODUCTION

OMICS is the term used to designate new biological sciences investigating a large group of molecules in biological samples. For instance, genomics and transcriptomics study changes in genome and transcription expression respectively. Numerous others OMICS are emerging (e.g. epigen-, prote-, metabol-, lipid-, glucid-OMICS). Support from bioinformatics and biostatistics, together with new molecular biology technologies for screening these large molecular groups (i.e. high-throughput biological arrays), has led to the development of these scientific fields. They help to draw relevant molecular identity cards of tumors.

STATE OF THE ART

Glial tumors form a heterogeneous morphological and clinical tumor group including astrocytomas (from grade I to IV), oligodendrogliomas and oligoastrocytomas (grades II and III). OMICS has enabled a better understanding of clinical and biological behavior of these tumors identifying new molecular abnormalities and relevant biomarkers (i.e. diagnostic, prognostic, predictive of response to treatments and predisposing to gliomas). BRAF abnormalities are diagnostic markers in pilocytic astrocytomas and pleomorphic xanthoastrocytomas (duplication with rearrangement and V600E mutation, respectively). Translocation (1;19)(q10;p10) is associated with oligodendroglial phenotype and better prognosis in gliomas. MGMT promoter methylation is predictive of response to chemotherapy in grade IV astrocytomas (GBM). In GBM, high-throughput studies have discovered: genetic and genomic disruption of tyrosine kinase receptors, TP53 and RB signaling pathways in the vast majority of cases; several transcriptomic (e.g. neural, proneural, classic and mesenchymal), epigenomic (e.g. CpG Island Methylator phenotype versus non methylator phenotype) and proteomic (e.g. EGFR, PDGFR and NF1) patterns with biological and/or clinical impacts. Finally, OMICS have identified recurrent IDH1/IDH2 mutations with prognostic significance in glial tumors and five single nucleotide polymorphisms associated with susceptibility to gliomas (e.g. TERT, CCDC26, PHLDB1, RTEL1 and CDKN2A/CDKN2B). These latter data combined with already known inherited cancer syndromes (i.e. Turcot type 1, Cowden, melanoma-astrocytoma, Li-Fraumeni, tuberous sclerosis complex, type I and II neurofibromatosis) improve our knowledge of genetic predisposition to gliomas.

PERSPECTIVES

Data generated by OMICS are huge, multidimensional and promising. Bioinformatics and biostatistics will allow their integration (integromics) toward a precise dissection of their clinical of biological significance in neuro-oncology.

CONCLUSIONS

OMICS have a growing impact in neuro-oncology improving basic research in brain tumors and clinical management of patients through the discovery of biomarkers.

摘要

引言

组学是一个术语,用于指代研究生物样本中一大类分子的新兴生物科学。例如,基因组学和转录组学分别研究基因组和转录表达的变化。许多其他组学也正在兴起(如表观基因组学、蛋白质组学、代谢组学、脂质组学、糖组学)。生物信息学和生物统计学的支持,以及用于筛选这些大分子组的新分子生物学技术(即高通量生物阵列),推动了这些科学领域的发展。它们有助于绘制肿瘤相关的分子身份卡。

现状

胶质肿瘤构成了一个形态和临床异质性的肿瘤群体,包括星形细胞瘤(从I级到IV级)、少突胶质细胞瘤和少突星形细胞瘤(II级和III级)。组学使人们能够更好地理解这些肿瘤的临床和生物学行为,识别新的分子异常和相关生物标志物(即诊断、预后、预测治疗反应和易患胶质瘤的标志物)。BRAF异常是毛细胞型星形细胞瘤和多形性黄色星形细胞瘤的诊断标志物(分别为伴有重排的重复和V600E突变)。易位(1;19)(q10;p10)与少突胶质细胞表型相关,且在胶质瘤中预后较好。MGMT启动子甲基化可预测IV级星形细胞瘤(胶质母细胞瘤)对化疗的反应。在胶质母细胞瘤中,高通量研究发现:绝大多数病例中酪氨酸激酶受体、TP53和RB信号通路的遗传和基因组破坏;几种具有生物学和/或临床影响的转录组学(如神经型、前神经型、经典型和间充质型)、表观基因组学(如CpG岛甲基化表型与非甲基化表型)和蛋白质组学(如表皮生长因子受体、血小板衍生生长因子受体和神经纤维瘤病1型)模式。最后,组学已确定IDH1/IDH2复发性突变在胶质肿瘤中具有预后意义,以及五个与胶质瘤易感性相关的单核苷酸多态性(如端粒酶逆转录酶、卷曲螺旋结构域蛋白26、含PH结构域蛋白1、调节端粒长度1和细胞周期蛋白依赖性激酶抑制剂2A/2B)。这些最新数据与已知的遗传性癌症综合征(即Turcot 1型、考登综合征、黑素瘤-星形细胞瘤、李-佛美尼综合征、结节性硬化症复合体、I型和II型神经纤维瘤病)相结合,提高了我们对胶质瘤遗传易感性的认识。

展望

组学生成的数据量巨大、维度多样且前景广阔。生物信息学和生物统计学将有助于整合这些数据(整合组学),以便在神经肿瘤学中精确剖析其临床和生物学意义。

结论

组学在神经肿瘤学中的影响日益增大,通过发现生物标志物改善了脑肿瘤的基础研究和患者的临床管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验