National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
Bioresour Technol. 2011 Nov;102(21):10047-51. doi: 10.1016/j.biortech.2011.08.021. Epub 2011 Aug 16.
A simple and rapid harvesting method by in situ magnetic separation with naked Fe(3)O(4) nanoparticles has been developed for the microalgal recovery of Botryococcus braunii and Chlorella ellipsoidea. After adding the magnetic particles to the microalgal culture broth, the microalgal cells were adsorbed and then separated by an external magnetic field. The maximal recovery efficiency reached more than 98% for both microalgae at a stirring speed of 120 r/min within 1 min, and the maximal adsorption capacity of these Fe(3)O(4) nanoparticles reached 55.9 mg-dry biomass/mg-particles for B. braunii and 5.83 mg-dry biomass/mg-particles for C. ellipsoidea. Appropriate pH value and high nanoparticle dose were favorable to the microalgae recovery, and the adsorption mechanism between the naked Fe(3)O(4) nanoparticles and the microalgal cells was mainly due to the electrostatic attraction. The developed in situ magnetic separation technology provides a great potential for saving time and energy associated with improving microalgal harvesting.
一种简单快速的原位磁分离方法,利用裸露的 Fe(3)O(4)纳米粒子,用于小球藻和椭圆小球藻的微藻回收。向微藻培养液中添加磁性颗粒后,在外磁场的作用下,微藻细胞被吸附并分离。在搅拌速度为 120 r/min 下,1 分钟内两种微藻的最大回收率均超过 98%,这些 Fe(3)O(4)纳米粒子的最大吸附容量分别达到 55.9 mg 干生物质/mg 颗粒对于 B. braunii 和 5.83 mg 干生物质/mg 颗粒对于 C. ellipsoidea。合适的 pH 值和高纳米颗粒剂量有利于微藻的回收,裸露的 Fe(3)O(4)纳米粒子与微藻细胞之间的吸附机制主要是静电吸引。所开发的原位磁分离技术为节省与提高微藻收获相关的时间和能源提供了巨大潜力。