National Key Laboratory of Biochemical Engineering & Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, People's Republic of China.
ACS Appl Mater Interfaces. 2014 Jan 8;6(1):109-15. doi: 10.1021/am404764n. Epub 2013 Dec 23.
Magnetic flocculant was synthesized for the highly efficient recovery of microalgal cells. The highest flocculation was achieved using the magnetic flocculant synthesized with iron oxide and 0.1 mg/mL cationic polyacrylamide (CPAM). This resulted in a recovery efficiency of more than 95% within 10 min using a dosage of 25 mg/L for Botryococcus braunii and 120 mg/L for Chlorella ellipsoidea. For both species, the adsorption isotherm data fit the Freundlich model better than the Langmuir model, indicating that the adsorption process was a heterogeneous multilayer. The maximum adsorption capacity was 114.8 and 21.4 mg dry cells/mg-particles at pH 7 for B. braunii and C. ellipsoidea, respectively. The primary flocculation mechanism was bridging, which was assisted by the electrostatic interactions between the microalgal cells and the magnetic flocculant under acidic conditions. These results provide new opportunities and challenges for understanding and improving the harvesting of microalgae using magnetic separation.
磁性絮凝剂被合成用于高效回收微藻细胞。使用氧化铁和 0.1mg/mL 阳离子聚丙烯酰胺(CPAM)合成的磁性絮凝剂实现了最高的絮凝效果。对于 Botryococcus braunii 和 Chlorella ellipsoidea,使用 25mg/L 的剂量在 10 分钟内实现了超过 95%的回收效率。对于这两种物种,吸附等温线数据更符合 Freundlich 模型而不是 Langmuir 模型,表明吸附过程是多相多层的。最大吸附容量分别为 114.8 和 21.4mg 干细胞/mg-颗粒,pH 值为 7,适用于 B. braunii 和 C. ellipsoidea。主要的絮凝机制是桥接,在酸性条件下,微藻细胞和磁性絮凝剂之间的静电相互作用辅助了絮凝过程。这些结果为理解和改进使用磁分离收获微藻提供了新的机会和挑战。