Microsoft Research, Los Angeles, California, USA.
Nat Methods. 2011 Sep 4;8(10):833-5. doi: 10.1038/nmeth.1681.
We describe factored spectrally transformed linear mixed models (FaST-LMM), an algorithm for genome-wide association studies (GWAS) that scales linearly with cohort size in both run time and memory use. On Wellcome Trust data for 15,000 individuals, FaST-LMM ran an order of magnitude faster than current efficient algorithms. Our algorithm can analyze data for 120,000 individuals in just a few hours, whereas current algorithms fail on data for even 20,000 individuals (http://mscompbio.codeplex.com/).
我们描述了因子化谱变换线性混合模型(FaST-LMM),这是一种用于全基因组关联研究(GWAS)的算法,它在运行时间和内存使用方面都与队列大小呈线性比例关系。在针对 15000 个人的惠康信托数据上,FaST-LMM 的运行速度比当前高效算法快一个数量级。我们的算法可以在短短几个小时内分析多达 120000 个人的数据,而当前的算法甚至在 20000 个人的数据上都无法运行(http://mscompbio.codeplex.com/)。