Suppr超能文献

跨膜蛋白中增强的螺旋间残基接触预测

Enhanced Inter-helical Residue Contact Prediction in Transmembrane Proteins.

作者信息

Wei Y, Floudas C A

机构信息

Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544-5263, U.S.A.

出版信息

Chem Eng Sci. 2011 Oct 1;66(19):4356-4369. doi: 10.1016/j.ces.2011.04.033.

Abstract

In this paper, based on a recent work by McAllister and Floudas who developed a mathematical optimization model to predict the contacts in transmembrane alpha-helical proteins from a limited protein data set [1], we have enhanced this method by 1) building a more comprehensive data set for transmembrane alpha-helical proteins and this enhanced data set is then used to construct the probability sets, MIN-1N and MIN-2N, for residue contact prediction, 2) enhancing the mathematical model via modifications of several important physical constraints and 3) applying a new blind contact prediction scheme on different protein sets proposed from analyzing the contact prediction on 65 proteins from Fuchs et al. [2]. The blind contact prediction scheme has been tested on two different membrane protein sets. Firstly it is applied to five carefully selected proteins from the training set. The contact prediction of these five proteins uses probability sets built by excluding the target protein from the training set, and an average accuracy of 56% was obtained. Secondly, it is applied to six independent membrane proteins with complicated topologies, and the prediction accuracies are 73% for 2ZY9A, 21% for 3KCUA, 46% for 2W1PA, 64% for 3CN5A, 77% for 3IXZA and 83% for 3K3FA. The average prediction accuracy for the six proteins is 60.7%. The proposed approach is also compared with a support vector machine method (TMhit [3]) and it is shown that it exhibits better prediction accuracy.

摘要

在本文中,基于麦卡利斯特和弗洛达斯最近的一项工作,他们开发了一个数学优化模型,用于从有限的蛋白质数据集中预测跨膜α-螺旋蛋白中的接触点[1],我们对该方法进行了改进:1)为跨膜α-螺旋蛋白构建了一个更全面的数据集,然后使用这个增强后的数据集来构建用于残基接触预测的概率集MIN-1N和MIN-2N;2)通过修改几个重要的物理约束条件来增强数学模型;3)在分析富克斯等人[2]对65种蛋白质的接触预测后,针对不同的蛋白质集应用一种新的盲接触预测方案。该盲接触预测方案已在两个不同的膜蛋白集上进行了测试。首先,将其应用于从训练集中精心挑选的五种蛋白质。这五种蛋白质的接触预测使用通过从训练集中排除目标蛋白构建的概率集,获得的平均准确率为56%。其次,将其应用于六种具有复杂拓扑结构的独立膜蛋白,对于2ZY9A的预测准确率为73%,对于3KCUA为21%,对于2W1PA为46%,对于3CN5A为64%,对于3IXZA为77%,对于3K3FA为83%。这六种蛋白质的平均预测准确率为60.7%。还将所提出的方法与支持向量机方法(TMhit [3])进行了比较,结果表明它具有更好的预测准确率。

相似文献

1
Enhanced Inter-helical Residue Contact Prediction in Transmembrane Proteins.
Chem Eng Sci. 2011 Oct 1;66(19):4356-4369. doi: 10.1016/j.ces.2011.04.033.
2
COMTOP: Protein Residue-Residue Contact Prediction through Mixed Integer Linear Optimization.
Membranes (Basel). 2021 Jun 30;11(7):503. doi: 10.3390/membranes11070503.
6
OMPcontact: An Outer Membrane Protein Inter-Barrel Residue Contact Prediction Method.
J Comput Biol. 2017 Mar;24(3):217-228. doi: 10.1089/cmb.2015.0236. Epub 2016 Aug 11.
7
DeepHelicon: Accurate prediction of inter-helical residue contacts in transmembrane proteins by residual neural networks.
J Struct Biol. 2020 Oct 1;212(1):107574. doi: 10.1016/j.jsb.2020.107574. Epub 2020 Jul 11.
10
R2C: improving ab initio residue contact map prediction using dynamic fusion strategy and Gaussian noise filter.
Bioinformatics. 2016 Aug 15;32(16):2435-43. doi: 10.1093/bioinformatics/btw181. Epub 2016 Apr 10.

引用本文的文献

1
Inter-Residue Distance Prediction From Duet Deep Learning Models.
Front Genet. 2022 May 16;13:887491. doi: 10.3389/fgene.2022.887491. eCollection 2022.
2
COMTOP: Protein Residue-Residue Contact Prediction through Mixed Integer Linear Optimization.
Membranes (Basel). 2021 Jun 30;11(7):503. doi: 10.3390/membranes11070503.

本文引用的文献

2
Predicting transmembrane helix packing arrangements using residue contacts and a force-directed algorithm.
PLoS Comput Biol. 2010 Mar 19;6(3):e1000714. doi: 10.1371/journal.pcbi.1000714.
4
Inter-subunit interaction of gastric H+,K+-ATPase prevents reverse reaction of the transport cycle.
EMBO J. 2009 Jun 3;28(11):1637-43. doi: 10.1038/emboj.2009.102. Epub 2009 Apr 23.
5
Predicting helix-helix interactions from residue contacts in membrane proteins.
Bioinformatics. 2009 Apr 15;25(8):996-1003. doi: 10.1093/bioinformatics/btp114. Epub 2009 Feb 25.
6
Prediction of membrane protein structures with complex topologies using limited constraints.
Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1409-14. doi: 10.1073/pnas.0808323106.
7
The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist.
Science. 2008 Nov 21;322(5905):1211-7. doi: 10.1126/science.1164772. Epub 2008 Oct 2.
8
Alpha-helical topology prediction and generation of distance restraints in membrane proteins.
Biophys J. 2008 Dec;95(11):5281-95. doi: 10.1529/biophysj.108.132241. Epub 2008 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验