Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA.
Proteins. 2010 Aug 1;78(10):2189-201. doi: 10.1002/prot.22731.
Building reliable structural models of G protein-coupled receptors (GPCRs) is a difficult task because of the paucity of suitable templates, low sequence identity, and the wide variety of ligand specificities within the superfamily. Template-based modeling is known to be the most successful method for protein structure prediction. However, refinement of homology models within 1-3 A C alpha RMSD of the native structure remains a major challenge. Here, we address this problem by developing a novel protocol (foldGPCR) for modeling the transmembrane (TM) region of GPCRs in complex with a ligand, aimed to accurately model the structural divergence between the template and target in the TM helices. The protocol is based on predicted conserved inter-residue contacts between the template and target, and exploits an all-atom implicit membrane force field. The placement of the ligand in the binding pocket is guided by biochemical data. The foldGPCR protocol is implemented by a stepwise hierarchical approach, in which the TM helical bundle and the ligand are assembled by simulated annealing trials in the first step, and the receptor-ligand complex is refined with replica exchange sampling in the second step. The protocol is applied to model the human beta(2)-adrenergic receptor (beta(2)AR) bound to carazolol, using contacts derived from the template structure of bovine rhodopsin. Comparison with the X-ray crystal structure of the beta(2)AR shows that our protocol is particularly successful in accurately capturing helix backbone irregularities and helix-helix packing interactions that distinguish rhodopsin from beta(2)AR.
建立可靠的 G 蛋白偶联受体 (GPCR) 结构模型是一项艰巨的任务,因为合适的模板稀缺、序列同一性低,而且该超家族的配体特异性多种多样。基于模板的建模被认为是蛋白质结构预测最成功的方法。然而,在与天然结构的 Cα RMSD 为 1-3 Å 的范围内对同源模型进行细化仍然是一个主要挑战。在这里,我们通过开发一种新的方案(foldGPCR)来解决这个问题,该方案旨在准确地模拟模板和目标在 TM 螺旋之间的结构差异,用于建模与配体结合的 GPCR 的跨膜 (TM) 区域。该方案基于模板和目标之间预测的保守残基间相互作用,并利用全原子隐式膜力场。配体在结合口袋中的放置由生化数据指导。foldGPCR 方案通过逐步分层的方法来实现,其中在第一步中通过模拟退火试验组装 TM 螺旋束和配体,在第二步中通过复制交换采样来细化受体-配体复合物。该方案应用于建模与人β2-肾上腺素能受体 (β2AR) 与卡唑洛尔结合,使用源自牛视紫红质模板结构的接触。与β2AR 的 X 射线晶体结构的比较表明,我们的方案特别成功地准确捕捉了区分视紫红质和β2AR 的螺旋骨干不规则性和螺旋-螺旋包装相互作用。