Suppr超能文献

FoldGPCR:A 类 G 蛋白偶联受体跨膜结构域的结构预测方案。

FoldGPCR: structure prediction protocol for the transmembrane domain of G protein-coupled receptors from class A.

机构信息

Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA.

出版信息

Proteins. 2010 Aug 1;78(10):2189-201. doi: 10.1002/prot.22731.

Abstract

Building reliable structural models of G protein-coupled receptors (GPCRs) is a difficult task because of the paucity of suitable templates, low sequence identity, and the wide variety of ligand specificities within the superfamily. Template-based modeling is known to be the most successful method for protein structure prediction. However, refinement of homology models within 1-3 A C alpha RMSD of the native structure remains a major challenge. Here, we address this problem by developing a novel protocol (foldGPCR) for modeling the transmembrane (TM) region of GPCRs in complex with a ligand, aimed to accurately model the structural divergence between the template and target in the TM helices. The protocol is based on predicted conserved inter-residue contacts between the template and target, and exploits an all-atom implicit membrane force field. The placement of the ligand in the binding pocket is guided by biochemical data. The foldGPCR protocol is implemented by a stepwise hierarchical approach, in which the TM helical bundle and the ligand are assembled by simulated annealing trials in the first step, and the receptor-ligand complex is refined with replica exchange sampling in the second step. The protocol is applied to model the human beta(2)-adrenergic receptor (beta(2)AR) bound to carazolol, using contacts derived from the template structure of bovine rhodopsin. Comparison with the X-ray crystal structure of the beta(2)AR shows that our protocol is particularly successful in accurately capturing helix backbone irregularities and helix-helix packing interactions that distinguish rhodopsin from beta(2)AR.

摘要

建立可靠的 G 蛋白偶联受体 (GPCR) 结构模型是一项艰巨的任务,因为合适的模板稀缺、序列同一性低,而且该超家族的配体特异性多种多样。基于模板的建模被认为是蛋白质结构预测最成功的方法。然而,在与天然结构的 Cα RMSD 为 1-3 Å 的范围内对同源模型进行细化仍然是一个主要挑战。在这里,我们通过开发一种新的方案(foldGPCR)来解决这个问题,该方案旨在准确地模拟模板和目标在 TM 螺旋之间的结构差异,用于建模与配体结合的 GPCR 的跨膜 (TM) 区域。该方案基于模板和目标之间预测的保守残基间相互作用,并利用全原子隐式膜力场。配体在结合口袋中的放置由生化数据指导。foldGPCR 方案通过逐步分层的方法来实现,其中在第一步中通过模拟退火试验组装 TM 螺旋束和配体,在第二步中通过复制交换采样来细化受体-配体复合物。该方案应用于建模与人β2-肾上腺素能受体 (β2AR) 与卡唑洛尔结合,使用源自牛视紫红质模板结构的接触。与β2AR 的 X 射线晶体结构的比较表明,我们的方案特别成功地准确捕捉了区分视紫红质和β2AR 的螺旋骨干不规则性和螺旋-螺旋包装相互作用。

相似文献

5
X-ray structure breakthroughs in the GPCR transmembrane region.G蛋白偶联受体跨膜区域的X射线结构突破。
Biochem Pharmacol. 2009 Jul 1;78(1):11-20. doi: 10.1016/j.bcp.2009.02.012. Epub 2009 Feb 27.

引用本文的文献

7
Computational modeling of membrane proteins.膜蛋白的计算建模
Proteins. 2015 Jan;83(1):1-24. doi: 10.1002/prot.24703. Epub 2014 Nov 19.

本文引用的文献

4
CHARMM: the biomolecular simulation program.CHARMM:生物分子模拟程序。
J Comput Chem. 2009 Jul 30;30(10):1545-614. doi: 10.1002/jcc.21287.
5
Solvent dramatically affects protein structure refinement.溶剂对蛋白质结构优化有显著影响。
Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20239-44. doi: 10.1073/pnas.0810818105. Epub 2008 Dec 10.
8
Structure of a beta1-adrenergic G-protein-coupled receptor.β1-肾上腺素能G蛋白偶联受体的结构
Nature. 2008 Jul 24;454(7203):486-91. doi: 10.1038/nature07101. Epub 2008 Jun 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验