Suppr超能文献

酵母源apo-和 holo-烯醇酶的热变性:不同机制,相似的活化焓。

Thermal unfolding of apo- and holo-enolase from Saccharomyces cerevisiae: different mechanisms, similar activation enthalpies.

机构信息

Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular, ENMyH-Instituto Politécnico Nacional, DF, Mexico.

出版信息

Int J Biol Macromol. 2011 Dec 1;49(5):871-8. doi: 10.1016/j.ijbiomac.2011.07.021. Epub 2011 Aug 4.

Abstract

Yeast enolase is stabilized by its natural cofactor Mg(2+). This stabilization is ascribed to the reduced subunit dissociation of the holoprotein. Nevertheless, how Mg(2+) alters the unfolding mechanism has yet to be fully characterized. Here, we investigate the role of Mg(2+) in the denaturation mechanism and unfolding kinetics of yeast enolase. Apo-enolase unfolds through a three-state process (N(2)↔2I→2D). The intermediate species is described as a monomeric molten globule-like conformation that becomes noticeable in the presence of phosphate and is able to recover its native secondary structure when cooled down. Kinetic studies confirmed the presence of the intermediate species, even though it was not noticeable in the thermal scans. The cofactor increases the cooperativity of the unfolding transitions, while the intermediate species becomes less noticeable or nonexistent. Thus, holo-enolase follows a simple two-state mechanism (N(2)→2D). Our results indicate smaller unfolding rate-constants in the presence of Mg(2+), thus favoring the native state. The temperature dependence of the unfolding rates allowed us to calculate the activation enthalpies of denaturation. Interestingly, despite the different unfolding mechanisms of the apo and holo forms of enolase, they both have similar activation barriers of denaturation (185-190 kJ mol(-1)).

摘要

酵母烯醇酶通过其天然辅因子 Mg(2+) 稳定。这种稳定性归因于全蛋白的亚基解离减少。然而,Mg(2+) 如何改变展开机制尚未得到充分表征。在这里,我们研究了 Mg(2+) 在酵母烯醇酶变性机制和展开动力学中的作用。脱辅基烯醇酶通过三态过程(N(2)↔2I→2D)展开。中间态被描述为单体的无规卷曲样构象,在存在磷酸盐时变得明显,并且当冷却时能够恢复其天然二级结构。动力学研究证实了中间态的存在,尽管在热扫描中没有观察到。辅因子增加了展开转变的协同性,而中间态变得不那么明显或不存在。因此,全酶遵循简单的二态机制(N(2)→2D)。我们的结果表明,在存在 Mg(2+) 的情况下,展开速率常数较小,从而有利于天然状态。展开速率的温度依赖性允许我们计算变性的活化焓。有趣的是,尽管烯醇酶的脱辅基和全酶形式具有不同的展开机制,但它们的变性活化能垒相似(185-190 kJ mol(-1))。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验