Suppr超能文献

确定窄带超声空气耦合换能器在<2.5MHz 频率下的多层匹配层的声阻抗 - 遗传算法的应用。

Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.

机构信息

Mechanical Engineering Department, Amirkabir University, Sommayeh Street, Central of Tehran, Iran.

出版信息

Ultrasonics. 2012 Jan;52(1):169-85. doi: 10.1016/j.ultras.2011.08.001. Epub 2011 Aug 17.

Abstract

The effective ultrasonic energy radiation into the air of piezoelectric transducers requires using multilayer matching systems with accurately selected acoustic impedances and the thickness of particular layers. One major problem of ultrasonic transducers, radiating acoustic energy into air, is to find the proper acoustic impedances of one or more matching layers. This work aims at developing an original solution to the acoustic impedance mismatch between transducer and air. If the acoustic impedance defences between transducer and air be more, then finding best matching layer(s) is harder. Therefore we consider PZT (lead zirconate titanate piezo electric) transducer and air that has huge acoustic impedance deference. The vibration source energy (PZT), which is used to generate the incident wave, consumes a part of the mechanical energy and converts it to an electrical one in theoretical calculation. After calculating matching layers, we consider the energy source as layer to design a transducer. However, this part of the mechanical energy will be neglected during the mathematical work. This approximation is correct only if the transducer is open-circuit. Since the possibilities of choosing material with required acoustic impedance are limited (the counted values cannot always be realized and applied in practice) it is necessary to correct the differences between theoretical values and the possibilities of practical application of given acoustic impedances. Such a correction can be done by manipulating other parameters of matching layers (e.g. by changing their thickness). The efficiency of the energy transmission from the piezoceramic transducer through different layers with different thickness and different attenuation enabling a compensation of non-ideal real values by changing their thickness was computer analyzed (base on genetic algorithm). Firstly, three theoretical solutions were investigated. Namely, Chebyshev, Desilets and Souquet theories. However, the obtained acoustic impedances do not necessarily correspond to a nowadays available material. Consequently, the values of the acoustic impedances are switched to the nearest values in a large material database. The switched values of the acoustic impedances do not generally give efficient transmission coefficients. Therefore, we proposed, in a second step, the use of a genetic algorithm (GA) to select the best acoustic impedances for matching layers from the material database for a narrow band ultrasonic transducer that work at frequency below the 2.5MHz by considering attenuation. However this bank is rich, the results get better. So the accuracy of the propose method increase by using a lot of materials with exact data for acoustic impedance and their attenuation, especially in high frequency. This yields highly more efficient transmission coefficient. In fact by using increasing number of layer we can increase our chance to find the best sets of materials with valuable both in acoustic impedance and low attenuation. Precisely, the transmission coefficient is almost equal to unity for the all studied cases. Finally the effect of thickness on transmission coefficient is investigated for different layers. The results showed that the transmission coefficient for air media is a function of thickness and sensitive to it even for small variation in thickness. In fact, the sensitivity increases when the differences of acoustic impedances to be high (difference between PZT and air).

摘要

压电换能器将有效超声能量辐射到空气中需要使用具有精确选择的声阻抗和特定层厚度的多层匹配系统。将超声换能器辐射到空气中的声能量的一个主要问题是找到一个或多个匹配层的适当声阻抗。这项工作旨在为换能器和空气之间的声阻抗不匹配问题找到一个原创的解决方案。如果换能器和空气之间的声阻抗差异较大,那么找到最佳匹配层就会更加困难。因此,我们考虑了 PZT(锆钛酸铅压电)换能器和具有巨大声阻抗差异的空气。在理论计算中,用于产生入射波的振动源能量(PZT)会消耗一部分机械能,并将其转换为电能。在计算匹配层之后,我们将能量源视为层来设计换能器。然而,在数学工作中,这部分机械能将被忽略。这种近似仅在换能器开路时才是正确的。由于具有所需声阻抗的材料的选择可能性有限(计算值并不总是可以实现并应用于实际),因此有必要校正理论值与给定声阻抗的实际应用之间的差异。这种校正可以通过操纵匹配层的其他参数(例如改变它们的厚度)来完成。通过改变不同厚度和不同衰减的不同层的能量传输效率,可以通过改变其厚度来补偿不理想的实际值,这是通过计算机分析(基于遗传算法)来实现的。首先,研究了三种理论解决方案。即,切比雪夫、德西雷和苏奎特理论。然而,得到的声阻抗并不一定对应于现今可用的材料。因此,声阻抗的值被切换到大型材料数据库中的最近值。声阻抗的切换值通常不会给出有效的传输系数。因此,我们在第二步中提出,在考虑衰减的情况下,使用遗传算法(GA)从材料数据库中选择窄带超声换能器的最佳匹配层声阻抗,该换能器在低于 2.5MHz 的频率下工作。然而,该银行很丰富,结果会更好。因此,通过使用具有精确声阻抗和衰减数据的大量材料,建议方法的准确性会提高,尤其是在高频下。这会产生更高的传输系数。事实上,通过使用更多的层,我们可以增加找到具有有价值的声阻抗和低衰减的最佳材料集的机会。确切地说,对于所有研究的情况,传输系数几乎等于 1。最后,研究了不同层的厚度对传输系数的影响。结果表明,对于空气介质,传输系数是厚度的函数,并且对厚度的变化很敏感,即使厚度变化很小。事实上,当要匹配的声阻抗差异较大(PZT 和空气之间的差异)时,灵敏度会增加。

相似文献

3
Vibration amplitude and induced temperature limitation of high power air-borne ultrasonic transducers.
Ultrasonics. 2014 Jan;54(1):168-76. doi: 10.1016/j.ultras.2013.04.008. Epub 2013 Apr 19.
5
Acoustic impedance matching of piezoelectric transducers to the air.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 May;51(5):624-33.
6
Modelling of a novel high-impedance matching layer for high frequency (>30 MHz) ultrasonic transducers.
Ultrasonics. 2014 Feb;54(2):586-91. doi: 10.1016/j.ultras.2013.08.012. Epub 2013 Aug 27.
7
Input impedance matching of acoustic transducers operating at off-resonant frequencies.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Dec;57(12):2784-94. doi: 10.1109/TUFFC.2010.1752.
9
Microfabricated 1-3 composite acoustic matching layers for 15 MHz transducers.
Ultrasonics. 2013 Aug;53(6):1141-9. doi: 10.1016/j.ultras.2013.02.010. Epub 2013 Mar 5.

引用本文的文献

1
Dual-Frequency Impedance Matching Network Design Using Genetic Algorithm for Power Ultrasound Transducer.
Micromachines (Basel). 2024 Feb 29;15(3):344. doi: 10.3390/mi15030344.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验