Suppr超能文献

一种用于在健康促进技术背景下分析连续传感器数据及其他数据的命名法。

A nomenclature for the analysis of continuous sensor and other data in the context of health-enabling technologies.

作者信息

Gietzelt Matthias, Wolf Klaus-Hendrik, Haux Reinhold

机构信息

Peter L. Reichertz Institute for Medical Informatics, University of Braunschweig - Institute of Technology and Hannover Medical School, Germany.

出版信息

Stud Health Technol Inform. 2011;169:460-4.

Abstract

Due to the progress in technology, it is possible to capture continuous sensor data pervasively and ubiquitously. In the area of health-enabling and ambient assisted technologies we are faced with the problem of analyzing these data in order to improve or at least maintain the health status of patients. But due to the interdisciplinarity of this field every discipline makes use of their own analyzing methods. In fact, the choice of a certain analyzing method often solely depends on the set of methods known to the data analyst. It would be an advantage if the data analyst would know about all available analyzing methods and their advantages and disadvantages when applied to the manifold of data. In this paper we propose a nomenclature that structures existing analyzing methods and assists in the choice of a certain method that fits to a given measurement context and a given problem.

摘要

由于技术的进步,现在有可能普遍且无处不在地捕获连续的传感器数据。在健康促进和环境辅助技术领域,我们面临着分析这些数据以改善或至少维持患者健康状况的问题。但由于该领域的跨学科性质,每个学科都使用自己的分析方法。实际上,特定分析方法的选择通常仅取决于数据分析师所熟知的方法集。如果数据分析师了解所有可用的分析方法及其在应用于多种数据时的优缺点,那将是一个优势。在本文中,我们提出了一种命名法,该命名法对现有的分析方法进行了结构化,并有助于选择适合给定测量环境和给定问题的特定方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验