Suppr超能文献

通过挖掘出院小结来检查编码完整性。

Checking coding completeness by mining discharge summaries.

作者信息

Schulz Stefan, Seddig Thorsten, Hanser Susanne, Zaiss Albrecht, Daumke Philipp

机构信息

University Medical Center Freiburg, Germany.

出版信息

Stud Health Technol Inform. 2011;169:594-8.

Abstract

Incomplete coding is a known problem in hospital information systems. In order to detect non-coded secondary diseases we developed a text classification system which scans discharge summaries for drug names. Using a drug knowledge base in which drug names are linked to sets of ICD-10 codes, the system selects those documents in which a drug name occurs that is not justified by any ICD-10 code within the corresponding record in the patient database. Treatment episodes with missing codes for diabetes mellitus, Parkinson's disease, and asthma/COPD were subject to investigation in a large German university hospital. The precision of the method was 79%, 14%, and 45% respectively, roughly estimated recall values amounted to 43%, 70%, and 36%. Based on these data we predict roughly 716 non-coded diabetes cases, 13 non-coded Parkinson cases, and 420 non-coded asthma/COPD cases among 34,865 treatment episodes.

摘要

编码不完整是医院信息系统中一个已知的问题。为了检测未编码的继发性疾病,我们开发了一个文本分类系统,该系统会扫描出院小结中的药物名称。利用一个药物知识库,其中药物名称与ICD - 10编码集相关联,该系统会选择那些在患者数据库相应记录中出现的药物名称没有任何ICD - 10编码作为依据的文档。在一家大型德国大学医院中,对糖尿病、帕金森病和哮喘/慢性阻塞性肺疾病(COPD)编码缺失的治疗病例进行了调查。该方法的精确率分别为79%、14%和45%,大致估计的召回率分别为43%、70%和36%。基于这些数据,我们预计在34865个治疗病例中,大约有716例未编码的糖尿病病例、13例未编码的帕金森病例和420例未编码的哮喘/COPD病例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验