Farkash Ariel, Neuvirth Hani, Goldschmidt Yaara, Conti Costanza, Rizzi Federica, Bianchi Stefano, Salvi Erika, Cusi Daniele, Shabo Amnon
IBM Haifa Research Lab, Haifa Univ. Mount Carmel Haifa, 31905, Israel.
Stud Health Technol Inform. 2011;169:689-93.
The new generation of health information standards, where the syntax and semantics of the content is explicitly formalized, allows for interoperability in healthcare scenarios and analysis in clinical research settings. Studies involving clinical and genomic data include accumulating knowledge as relationships between genotypic and phenotypic information as well as associations within the genomic and clinical worlds. Some involve analysis results targeted at a specific disease; others are of a predictive nature specific to a patient and may be used by decision support applications. Representing knowledge is as important as representing data since data is more useful when coupled with relevant knowledge. Any further analysis and cross-research collaboration would benefit from persisting knowledge and data in a unified way. This paper describes a methodology used in Hypergenes, an EC FP7 project targeting Essential Hypertension, which captures data and knowledge using standards such as HL7 CDA and Clinical Genomics, aligned with the CEN EHR 13606 specification. We demonstrate the benefits of such an approach for clinical research as well as in healthcare oriented scenarios.
新一代健康信息标准明确规定了内容的语法和语义,实现了医疗场景中的互操作性以及临床研究环境中的分析。涉及临床和基因组数据的研究包括积累有关基因型和表型信息之间关系以及基因组和临床领域内关联的知识。一些研究涉及针对特定疾病的分析结果;其他研究则具有针对患者的预测性质,可供决策支持应用程序使用。表示知识与表示数据同样重要,因为数据与相关知识结合时更有用。任何进一步的分析和跨研究合作都将受益于以统一方式保存知识和数据。本文描述了Hypergenes(一个针对原发性高血压的欧盟第七框架计划项目)中使用的一种方法,该方法使用诸如HL7 CDA和临床基因组学等标准来捕获数据和知识,并与CEN EHR 13606规范保持一致。我们展示了这种方法在临床研究以及面向医疗保健的场景中的优势。