Suppr超能文献

一种混合方法,用于预测复杂组合结构中振动声能量的分布。

A hybrid approach for predicting the distribution of vibro-acoustic energy in complex built-up structures.

机构信息

School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom.

出版信息

J Acoust Soc Am. 2011 Sep;130(3):1337-47. doi: 10.1121/1.3621321.

Abstract

Finding the distribution of vibro-acoustic energy in complex built-up structures in the mid-to-high frequency regime is a difficult task. In particular, structures with large variation of local wavelengths and/or characteristic scales pose a challenge referred to as the mid-frequency problem. Standard numerical methods such as the finite element method (FEM) scale with the local wavelength and quickly become too large even for modern computer architectures. High frequency techniques, such as statistical energy analysis (SEA), often miss important information such as dominant resonance behavior due to stiff or small scale parts of the structure. Hybrid methods circumvent this problem by coupling FEM/BEM and SEA models in a given built-up structure. In the approach adopted here, the whole system is split into a number of subsystems that are treated by either FEM or SEA depending on the local wavelength. Subsystems with relative long wavelengths are modeled using FEM. Making a diffuse field assumption for the wave fields in the short wave length components, the coupling between subsystems can be reduced to a weighted random field correlation function. The approach presented results in an SEA-like set of linear equations that can be solved for the mean energies in the short wavelength subsystems.

摘要

在中频范围内寻找复杂组合结构中的声振能量分布是一项艰巨的任务。特别是对于局部波长和/或特征尺度变化较大的结构,存在着被称为中频问题的挑战。标准数值方法,如有限元法(FEM),随着局部波长的增加而迅速增大,即使对于现代计算机体系结构来说也变得过大。高频技术,如统计能量分析(SEA),由于结构的刚性或小尺度部分,往往会错过重要信息,如主导共振行为。混合方法通过在给定的组合结构中耦合 FEM/BEM 和 SEA 模型来规避这个问题。在采用的方法中,整个系统被分成若干个子系统,根据局部波长,子系统分别采用 FEM 或 SEA 进行处理。相对长波长的子系统采用 FEM 建模。对于短波长分量中的波场,假设为漫射场,子系统之间的耦合可以简化为加权随机场相关函数。所提出的方法产生了一组类似于 SEA 的线性方程,可以用来求解短波长子系统中的平均能量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验