Centre de Biophys. Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans, France.
J Chem Phys. 2011 Aug 28;135(8):084110. doi: 10.1063/1.3626275.
We propose a rigorous method for removing rigid-body motions from a given molecular dynamics trajectory of a flexible macromolecule. The method becomes exact in the limit of an infinitesimally small sampling step for the input trajectory. In a recent paper [G. Kneller, J. Chem. Phys. 128, 194101 (2008)], one of us showed that virtual internal atomic displacements for small time increments can be derived from Gauss' principle of least constraint, which leads to a rotational superposition problem for the atomic coordinates in two consecutive time frames of the input trajectory. Here, we demonstrate that the accumulation of these displacements in a molecular-fixed frame, which evolves in time according to the virtual rigid-body motions, leads to the desired trajectory for internal motions. The atomic coordinates in the input and output trajectory are related by a roto-translation, which guarantees that the internal energy of the molecule is left invariant. We present a convenient implementation of our method, in which the accumulation of the internal displacements is performed implicitly. Two numerical examples illustrate the difference to the classical approach for removing macromolecular rigid-body motions, which consists of aligning its configurations in the input trajectory with a fixed reference structure.
我们提出了一种从给定的柔性大分子分子动力学轨迹中去除刚体运动的严格方法。在输入轨迹的采样步长无穷小的极限下,该方法是精确的。在最近的一篇论文[G. Kneller, J. Chem. Phys. 128, 194101 (2008)]中,我们中的一位作者表明,对于小的时间增量,可以从最小约束原理推导出虚拟内部原子位移,这导致了输入轨迹中两个连续时间帧的原子坐标的旋转叠加问题。在这里,我们证明了这些位移在随时间演化的分子固定框架中的积累,导致了内部运动的期望轨迹。输入和输出轨迹中的原子坐标通过旋转平移相关联,这保证了分子的内能不变。我们提出了我们的方法的一种方便的实现,其中内部位移的积累是隐式进行的。两个数值示例说明了与去除大分子刚体运动的经典方法的区别,该方法包括将其在输入轨迹中的构象与固定参考结构对齐。