Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, St. Louis, Missouri 63130, USA.
J Biomed Opt. 2011 Aug;16(8):086009. doi: 10.1117/1.3609004.
In turbid media such as biological tissue, multiple scattering hinders direct light focusing at depths beyond one transport mean free path. As a solution to this problem, time-reversed ultrasonically encoded (TRUE) optical focusing is proposed based on ultrasonic encoding of diffused laser light and optical time reversal. In TRUE focusing, a laser beam of long coherence length illuminates a turbid medium, where the incident light undergoes multiple scattering and part of it gets ultrasonically encoded within the ultrasonic focal zone. A conjugated wavefront of the ultrasonically encoded light is then generated by a phase conjugate mirror outside the medium, which traces back the trajectories of the ultrasonically encoded diffused light and converges light to the ultrasonic focal zone. Here, we report the latest experimental improvement in TRUE optical focusing that increases its penetration in tissue-mimicking media from a thickness of 3.75 to 7.00 mm. We also demonstrate that the TRUE focus depends on the focal diameter of the ultrasonic transducer.
在生物组织等混浊介质中,多次散射会阻碍光在传输平均自由程以外的深度直接聚焦。为了解决这个问题,提出了基于超声编码扩散激光光和光时间反转的时反超声编码(TRUE)光学聚焦。在 TRUE 聚焦中,长相干长度的激光束照亮混浊介质,其中入射光经历多次散射,部分光在超声焦点内被超声编码。然后,通过在介质外部的位相共轭镜产生超声编码光的共轭波前,该位相共轭镜跟踪超声编码扩散光的轨迹,并将光会聚到超声焦点。在这里,我们报告了 TRUE 光学聚焦的最新实验改进,将其在组织模拟介质中的穿透深度从 3.75 毫米增加到 7.00 毫米。我们还证明了 TRUE 焦点取决于超声换能器的焦斑直径。