Suppr超能文献

新型 4-硝基甲苯降解细菌途径的进化。

Evolution of a new bacterial pathway for 4-nitrotoluene degradation.

机构信息

Department of Microbiology, College of Biological Sciences, University of California, Davis, CA 95616, USA.

出版信息

Mol Microbiol. 2011 Oct;82(2):355-64. doi: 10.1111/j.1365-2958.2011.07817.x. Epub 2011 Sep 13.

Abstract

Bacteria that assimilate synthetic nitroarene compounds represent unique evolutionary models, as their metabolic pathways are in the process of adaptation and optimization for the consumption of these toxic chemicals. We used Acidovorax sp. strain JS42, which is capable of growth on nitrobenzene and 2-nitrotoluene, in experiments to examine how a nitroarene degradation pathway evolves when its host strain is challenged with direct selective pressure to assimilate non-native substrates. Although the same enzyme that initiates the degradation of nitrobenzene and 2-nitrotoluene also oxidizes 4-nitrotoluene to 4-methylcatechol, which is a growth substrate for JS42, the strain is incapable of growth on 4-nitrotoluene. Using long-term laboratory evolution experiments, we obtained JS42 mutants that gained the ability to grow on 4-nitrotoluene via a new degradation pathway. The underlying basis for this new activity resulted from the accumulation of specific mutations in the gene encoding the dioxygenase that catalyses the initial oxidation of nitroarene substrates, but at positions distal to the active site and previously unknown to affect activity in this or related enzymes. We constructed additional mutant dioxygenases to identify the order of mutations that led to the improved enzymes. Biochemical analyses revealed a defined, step-wise pathway for the evolution of the improved dioxygenases.

摘要

能够以硝基苯和 2-硝基甲苯为生长基质的 Acidovorax sp. 菌株 JS42 被用于实验,以研究当宿主菌株受到直接选择压力以同化非天然基质时,硝基芳烃降解途径是如何进化的。尽管起始降解硝基苯和 2-硝基甲苯的同一种酶也能将 4-硝基甲苯氧化为 4-甲基儿茶酚,而 4-甲基儿茶酚是 JS42 的生长基质,但该菌株不能以 4-硝基甲苯为生长基质。通过长期的实验室进化实验,我们获得了能够通过新的降解途径生长在 4-硝基甲苯上的 JS42 突变体。这种新活性的潜在基础是编码双加氧酶的基因中特定突变的积累,该基因催化硝基芳烃底物的初始氧化,但位于活性位点的远端,以前未知的突变会影响该酶或相关酶的活性。我们构建了额外的突变双加氧酶,以确定导致改进酶的突变顺序。生化分析揭示了改进型双加氧酶进化的明确的、逐步的途径。

相似文献

1
Evolution of a new bacterial pathway for 4-nitrotoluene degradation.
Mol Microbiol. 2011 Oct;82(2):355-64. doi: 10.1111/j.1365-2958.2011.07817.x. Epub 2011 Sep 13.
3
Application of nitroarene dioxygenases in the design of novel strains that degrade chloronitrobenzenes.
Microb Biotechnol. 2009 Mar;2(2):241-52. doi: 10.1111/j.1751-7915.2008.00083.x.
4
A Recently Assembled Degradation Pathway for 2,3-Dichloronitrobenzene in sp. Strain JS3051.
mBio. 2021 Aug 31;12(4):e0223121. doi: 10.1128/mBio.02231-21. Epub 2021 Aug 24.
7
Expression, purification and substrate specificities of 3-nitrotoluene dioxygenase from Diaphorobacter sp. strain DS2.
Biochem Biophys Res Commun. 2014 Feb 28;445(1):36-42. doi: 10.1016/j.bbrc.2014.01.113. Epub 2014 Jan 31.
8
A Nag-like dioxygenase initiates 3,4-dichloronitrobenzene degradation via 4,5-dichlorocatechol in Diaphorobacter sp. strain JS3050.
Environ Microbiol. 2021 Feb;23(2):1053-1065. doi: 10.1111/1462-2920.15295. Epub 2020 Nov 10.
9
Biodegradation of 2-nitrotoluene by Pseudomonas sp. strain JS42.
Appl Environ Microbiol. 1994 Sep;60(9):3466-9. doi: 10.1128/aem.60.9.3466-3469.1994.
10
Reconstructing the evolutionary history of nitrotoluene detection in the transcriptional regulator NtdR.
Mol Microbiol. 2009 Nov;74(4):826-43. doi: 10.1111/j.1365-2958.2009.06904.x. Epub 2009 Oct 22.

引用本文的文献

2
Evolution of pollutant biodegradation.
Appl Microbiol Biotechnol. 2025 Feb 4;109(1):36. doi: 10.1007/s00253-025-13418-0.
3
Elucidating the Role of O Uncoupling for the Adaptation of Bacterial Biodegradation Reactions Catalyzed by Rieske Oxygenases.
ACS Environ Au. 2024 May 14;4(4):204-218. doi: 10.1021/acsenvironau.4c00016. eCollection 2024 Jul 17.
4
Semi-rational design of nitroarene dioxygenase for catalytic ability toward 2,4-dichloronitrobenzene.
Appl Environ Microbiol. 2024 Jun 18;90(6):e0143623. doi: 10.1128/aem.01436-23. Epub 2024 May 6.
5
Identification, degradation characteristics, and application of a newly isolated pyridine-degrading sp. BN6-4.
Water Sci Technol. 2024 Apr;89(8):2006-2019. doi: 10.2166/wst.2024.108. Epub 2024 Apr 2.
7
Elucidating the Role of O Uncoupling in the Oxidative Biodegradation of Organic Contaminants by Rieske Non-heme Iron Dioxygenases.
ACS Environ Au. 2022 Sep 21;2(5):428-440. doi: 10.1021/acsenvironau.2c00023. Epub 2022 Jul 7.
9
A Recently Assembled Degradation Pathway for 2,3-Dichloronitrobenzene in sp. Strain JS3051.
mBio. 2021 Aug 31;12(4):e0223121. doi: 10.1128/mBio.02231-21. Epub 2021 Aug 24.

本文引用的文献

1
Biodegradation of 2-nitrotoluene by Micrococcus sp. strain SMN-1.
Biodegradation. 2011 Feb;22(1):95-102. doi: 10.1007/s10532-010-9379-3. Epub 2010 Jun 27.
2
Nitroaromatic compounds, from synthesis to biodegradation.
Microbiol Mol Biol Rev. 2010 Jun;74(2):250-72. doi: 10.1128/MMBR.00006-10.
3
Reconstructing the evolutionary history of nitrotoluene detection in the transcriptional regulator NtdR.
Mol Microbiol. 2009 Nov;74(4):826-43. doi: 10.1111/j.1365-2958.2009.06904.x. Epub 2009 Oct 22.
4
Evolution of efficient pathways for degradation of anthropogenic chemicals.
Nat Chem Biol. 2009 Aug;5(8):559-66. doi: 10.1038/nchembio.197.
5
Oxidative Pathway for the Biodegradation of Nitrobenzene by Comamonas sp. Strain JS765.
Appl Environ Microbiol. 1995 Jun;61(6):2308-13. doi: 10.1128/aem.61.6.2308-2313.1995.
6
Control of substrate specificity by active-site residues in nitrobenzene dioxygenase.
Appl Environ Microbiol. 2006 Mar;72(3):1817-24. doi: 10.1128/AEM.72.3.1817-1824.2006.
7
Long-term survival during stationary phase: evolution and the GASP phenotype.
Nat Rev Microbiol. 2006 Feb;4(2):113-20. doi: 10.1038/nrmicro1340.
8
Active site residues controlling substrate specificity in 2-nitrotoluene dioxygenase from Acidovorax sp. strain JS42.
J Ind Microbiol Biotechnol. 2005 Oct;32(10):465-73. doi: 10.1007/s10295-005-0021-z. Epub 2005 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验