Suppr超能文献

针对 2,4-二氯硝基苯的催化能力,对硝基芳烃双加氧酶进行半理性设计。

Semi-rational design of nitroarene dioxygenase for catalytic ability toward 2,4-dichloronitrobenzene.

机构信息

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

Department of Engineering Science, University of Oxford, Oxford, United Kingdom.

出版信息

Appl Environ Microbiol. 2024 Jun 18;90(6):e0143623. doi: 10.1128/aem.01436-23. Epub 2024 May 6.

Abstract

Rieske non-heme dioxygenase family enzymes play an important role in the aerobic biodegradation of nitroaromatic pollutants, but no active dioxygenases are available in nature for initial reactions in the degradation of many refractory pollutants like 2,4-dichloronitrobenzene (24DCNB). Here, we report the engineering of hotspots in 2,3-dichloronitrobenzene dioxygenase from sp. strain JS3051, achieved through molecular dynamic simulation analysis and site-directed mutagenesis, with the aim of enhancing its catalytic activity toward 24DCNB. The computationally predicted activity scores were largely consistent with the detected activities in wet experiments. Among them, the two most beneficial mutations (E204M and M248I) were obtained, and the combined mutant reached up to a 62-fold increase in activity toward 24DCNB, generating a single product, 3,5-dichlorocatechol, which is a naturally occurring compound. analysis confirmed that residue 204 affected the substrate preference for -substituted nitroarenes, while residue 248 may influence substrate preference by interaction with residue 295. Overall, this study provides a framework for manipulating nitroarene dioxygenases using computational methods to address various nitroarene contamination problems.IMPORTANCEAs a result of human activities, various nitroaromatic pollutants continue to enter the biosphere with poor degradability, and dioxygenation is an important kickoff step to remove toxic nitro-groups and convert them into degradable products. The biodegradation of many nitroarenes has been reported over the decades; however, many others still lack corresponding enzymes to initiate their degradation. Although rieske non-heme dioxygenase family enzymes play extraordinarily important roles in the aerobic biodegradation of various nitroaromatic pollutants, prediction of their substrate specificity is difficult. This work greatly improved the catalytic activity of dioxygenase against 2,4-dichloronitrobenzene by computer-aided semi-rational design, paving a new way for the evolution strategy of nitroarene dioxygenase. This study highlights the potential for using enzyme structure-function information with computational pre-screening methods to rapidly tailor the catalytic functions of enzymes toward poorly biodegradable contaminants.

摘要

Rieske 非血红素双氧酶家族酶在芳香族污染物的需氧生物降解中起着重要作用,但自然界中没有活性双氧酶可用于许多难降解污染物(如 2,4-二氯硝基苯(24DCNB))初始降解反应。在这里,我们报道了通过分子动力学模拟分析和定点突变工程改造 sp. JS3051 菌株 2,3-二氯硝基苯双氧酶的热点,旨在提高其对 24DCNB 的催化活性。通过计算预测的活性评分与湿实验中检测到的活性有很大的一致性。其中,获得了两个最有益的突变(E204M 和 M248I),而组合突变体对 24DCNB 的活性最高可达 62 倍,生成一种天然存在的化合物 3,5-二氯邻苯二酚。 分析证实,残基 204 影响 -取代硝基芳烃的底物偏好,而残基 248 可能通过与残基 295 的相互作用影响底物偏好。总的来说,这项研究为使用计算方法操纵硝基芳烃双氧酶提供了一个框架,以解决各种硝基芳烃污染问题。

重要性

由于人类活动,各种硝基芳烃污染物不断进入生物圈,降解性差,而加氧作用是去除有毒硝基基团并将其转化为可降解产物的重要起始步骤。几十年来,已经报道了许多硝基芳烃的生物降解;然而,还有许多其他的硝基芳烃仍然缺乏相应的酶来启动它们的降解。尽管 Rieske 非血红素双氧酶家族酶在各种硝基芳烃污染物的需氧生物降解中起着非常重要的作用,但预测其底物特异性是困难的。这项工作通过计算机辅助半理性设计大大提高了双氧酶对 2,4-二氯硝基苯的催化活性,为硝基芳烃双氧酶的进化策略开辟了新途径。这项研究强调了利用酶结构-功能信息与计算预筛选方法相结合,快速调整酶对难降解污染物的催化功能的潜力。

相似文献

1
Semi-rational design of nitroarene dioxygenase for catalytic ability toward 2,4-dichloronitrobenzene.
Appl Environ Microbiol. 2024 Jun 18;90(6):e0143623. doi: 10.1128/aem.01436-23. Epub 2024 May 6.
2
A Recently Assembled Degradation Pathway for 2,3-Dichloronitrobenzene in sp. Strain JS3051.
mBio. 2021 Aug 31;12(4):e0223121. doi: 10.1128/mBio.02231-21. Epub 2021 Aug 24.
3
Structural insight into the dioxygenation of nitroarene compounds: the crystal structure of nitrobenzene dioxygenase.
J Mol Biol. 2005 May 20;348(5):1139-51. doi: 10.1016/j.jmb.2005.03.052. Epub 2005 Apr 7.
4
A Nag-like dioxygenase initiates 3,4-dichloronitrobenzene degradation via 4,5-dichlorocatechol in Diaphorobacter sp. strain JS3050.
Environ Microbiol. 2021 Feb;23(2):1053-1065. doi: 10.1111/1462-2920.15295. Epub 2020 Nov 10.
5
Biodegradation of 3-Chloronitrobenzene and 3-Bromonitrobenzene by sp. Strain JS3051.
Appl Environ Microbiol. 2022 Apr 26;88(8):e0243721. doi: 10.1128/aem.02437-21. Epub 2022 Mar 28.
6
Evolution of a new bacterial pathway for 4-nitrotoluene degradation.
Mol Microbiol. 2011 Oct;82(2):355-64. doi: 10.1111/j.1365-2958.2011.07817.x. Epub 2011 Sep 13.
8
Control of substrate specificity by active-site residues in nitrobenzene dioxygenase.
Appl Environ Microbiol. 2006 Mar;72(3):1817-24. doi: 10.1128/AEM.72.3.1817-1824.2006.
9
Application of nitroarene dioxygenases in the design of novel strains that degrade chloronitrobenzenes.
Microb Biotechnol. 2009 Mar;2(2):241-52. doi: 10.1111/j.1751-7915.2008.00083.x.
10

引用本文的文献

1
Directed evolution of hydrocarbon-producing enzymes.
Biotechnol Biofuels Bioprod. 2025 Aug 12;18(1):91. doi: 10.1186/s13068-025-02689-4.

本文引用的文献

1
Molecular Basis and Evolutionary Origin of 1-Nitronaphthalene Catabolism in sp. Strain JS3065.
Appl Environ Microbiol. 2023 Jan 31;89(1):e0172822. doi: 10.1128/aem.01728-22. Epub 2023 Jan 9.
2
Elucidating the Role of O Uncoupling in the Oxidative Biodegradation of Organic Contaminants by Rieske Non-heme Iron Dioxygenases.
ACS Environ Au. 2022 Sep 21;2(5):428-440. doi: 10.1021/acsenvironau.2c00023. Epub 2022 Jul 7.
3
Substrate-Specific Coupling of O Activation to Hydroxylations of Aromatic Compounds by Rieske Non-heme Iron Dioxygenases.
ACS Catal. 2022 Jun 3;12(11):6444-6456. doi: 10.1021/acscatal.2c00383. Epub 2022 May 16.
4
Hot spots-making directed evolution easier.
Biotechnol Adv. 2022 May-Jun;56:107926. doi: 10.1016/j.biotechadv.2022.107926. Epub 2022 Feb 11.
5
The Apparently Unreactive Substrate Facilitates the Electron Transfer for Dioxygen Activation in Rieske Dioxygenases.
Chemistry. 2022 Mar 16;28(16):e202103937. doi: 10.1002/chem.202103937. Epub 2022 Feb 25.
6
Design principles for site-selective hydroxylation by a Rieske oxygenase.
Nat Commun. 2022 Jan 11;13(1):255. doi: 10.1038/s41467-021-27822-3.
7
A Recently Assembled Degradation Pathway for 2,3-Dichloronitrobenzene in sp. Strain JS3051.
mBio. 2021 Aug 31;12(4):e0223121. doi: 10.1128/mBio.02231-21. Epub 2021 Aug 24.
8
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
9
Computer-aided understanding and engineering of enzymatic selectivity.
Biotechnol Adv. 2022 Jan-Feb;54:107793. doi: 10.1016/j.biotechadv.2021.107793. Epub 2021 Jul 2.
10
Directed Computational Evolution of Quorum-Quenching Lactonases from the Amidohydrolase Superfamily.
Structure. 2020 Jun 2;28(6):635-642.e3. doi: 10.1016/j.str.2020.03.011. Epub 2020 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验