Genome Stability Laboratory, Center for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland.
J Biol Chem. 2011 Oct 28;286(43):37483-95. doi: 10.1074/jbc.M111.284885. Epub 2011 Sep 6.
The monosaccharide, β-N-acetylglucosamine (GlcNAc), can be added to the hydroxyl group of either serines or threonines to generate an O-linked β-N-acetylglucosamine (O-GlcNAc) residue (Love, D. C., and Hanover, J. A. (2005) Sci. STKE 2005 312, 1-14; Hart, G. W., Housley, M. P., and Slawson, C. (2007) Nature 446, 1017-1022). This post-translational protein modification, termed O-GlcNAcylation, is reversible, analogous to phosphorylation, and has been implicated in many cellular processes. Here, we present evidence that in human cells all four core histones of the nucleosome are substrates for this glycosylation in the relative abundance H3, H4/H2B, and H2A. Increasing the intracellular level of UDP-GlcNAc, the nucleotide sugar donor substrate for O-GlcNAcylation enhanced histone O-GlcNAcylation and partially suppressed phosphorylation of histone H3 at serine 10 (H3S10ph). Expression of recombinant H3.3 harboring an S10A mutation abrogated histone H3 O-GlcNAcylation relative to its wild-type version, consistent with H3S10 being a site of histone O-GlcNAcylation (H3S10glc). Moreover, O-GlcNAcylated histones were lost from H3S10ph immunoprecipitates, whereas immunoprecipitation of either H3K4me3 or H3K9me3 (active or inactive histone marks, respectively) resulted in co-immunoprecipitation of O-GlcNAcylated histones. We also examined histone O-GlcNAcylation during cell cycle progression. Histone O-GlcNAcylation is high in G(1) cells, declines throughout the S phase, increases again during late S/early G(2), and persists through late G(2) and mitosis. Thus, O-GlcNAcylation is a novel histone post-translational modification regulating chromatin conformation during transcription and cell cycle progression.
单糖β-N-乙酰氨基葡萄糖(GlcNAc)可以添加到丝氨酸或苏氨酸的羟基上,生成 O-连接的β-N-乙酰氨基葡萄糖(O-GlcNAc)残基(Love,D. C.,and Hanover,J. A.(2005)Sci. STKE 2005 312,1-14;Hart,G. W.,Housley,M. P.,and Slawson,C.(2007)Nature 446,1017-1022)。这种翻译后蛋白质修饰被称为 O-GlcNAc 化,是可逆的,类似于磷酸化,并与许多细胞过程有关。在这里,我们提供的证据表明,在人类细胞中,核小体的所有四个核心组蛋白都是这种糖基化的底物,相对丰度为 H3、H4/H2B 和 H2A。增加细胞内 UDP-GlcNAc 的水平,即 O-GlcNAc 化的核苷酸糖供体底物,增强了组蛋白 O-GlcNAc 化,并部分抑制了组蛋白 H3 丝氨酸 10 位的磷酸化(H3S10ph)。表达携带 S10A 突变的重组 H3.3 相对于其野生型版本,组蛋白 H3 O-GlcNAc 化被阻断,这与 H3S10 是组蛋白 O-GlcNAc 化的位点一致(H3S10glc)。此外,从 H3S10ph 免疫沉淀物中丢失了 O-GlcNAc 化的组蛋白,而 H3K4me3 或 H3K9me3(分别为活性或非活性组蛋白标记)的免疫沉淀导致 O-GlcNAc 化的组蛋白共免疫沉淀。我们还检查了细胞周期进程中的组蛋白 O-GlcNAc 化。G1 期细胞中组蛋白 O-GlcNAc 化水平较高,整个 S 期下降,晚期 S/早期 G2 期再次增加,并持续到晚期 G2 和有丝分裂期。因此,O-GlcNAc 化是一种新的组蛋白翻译后修饰,调节转录和细胞周期进程中染色质构象。