Novartis Pharma AG, Basel, Switzerland.
Stat Med. 2011 Nov 20;30(26):3067-81. doi: 10.1002/sim.4342. Epub 2011 Sep 5.
This paper discusses the application of an adaptive design for treatment arm selection in an oncology trial, with survival as the primary endpoint and disease progression as a key secondary endpoint. We carried out treatment arm selection at an interim analysis by using Bayesian predictive power combining evidence from the two endpoints. At the final analysis, we carried out a frequentist statistical test of efficacy on the survival endpoint. We investigated several approaches (Bonferroni approach, 'Dunnett-like' approach, a conditional error function approach and a combination p-value approach) with respect to their power and the precise conditions under which type I error control is attained.
本文讨论了在以生存为主要终点和疾病进展为关键次要终点的肿瘤试验中,应用适应性设计进行治疗组选择的问题。我们在中期分析时,通过结合两个终点的证据,使用贝叶斯预测效力来进行治疗组选择。在最终分析时,我们对生存终点进行了基于频率的功效统计检验。我们研究了几种方法(Bonferroni 方法、“Dunnett 类”方法、条件误差函数方法和组合 p 值方法),探讨了它们的效力以及达到 I 型错误控制的精确条件。