Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Rm. B1-03, Bethesda, Maryland 20892, USA.
Protein Sci. 2011 Nov;20(11):1781-9. doi: 10.1002/pro.723.
Structural studies of UV-induced lesions and their complexes with repair proteins reveal an intrinsic flexibility of DNA at lesion sites. Reduced DNA rigidity stems primarily from the loss of base stacking, which may manifest as bending, unwinding, base unstacking, or flipping out. The intrinsic flexibility at UV lesions allows efficient initial lesion recognition within a pool of millions to billions of normal DNA base pairs. To bypass the damaged site by translesion synthesis, the specialized DNA polymerase η acts like a molecular "splint" and reinforces B-form DNA by numerous protein-phosphate interactions. Photolyases and glycosylases that specifically repair UV lesions interact directly with UV lesions in bent DNA via surface complementation. UvrA and UvrB, which recognize a variety of lesions in the bacterial nucleotide excision repair pathway, appear to exploit hysteresis exhibited by DNA lesions and conduct an ATP-dependent stress test to distort and separate DNA strands. Similar stress tests are likely conducted in eukaryotic nucleotide excision repair.
DNA 在损伤位点的结构研究及其与修复蛋白的复合物揭示了 DNA 的固有柔韧性。DNA 刚性的降低主要源于碱基堆积的丧失,这可能表现为弯曲、解旋、碱基解堆叠或翻转。在 UV 损伤处的固有柔韧性允许在数百万到数十亿个正常 DNA 碱基对的池中有效地进行初始损伤识别。为了通过跨损伤合成绕过损伤部位,专门的 DNA 聚合酶 η 充当分子“夹板”,并通过许多蛋白-磷酸相互作用增强 B 型 DNA。专门修复 UV 损伤的光解酶和糖苷酶通过表面互补直接与弯曲 DNA 中的 UV 损伤相互作用。在细菌核苷酸切除修复途径中识别各种损伤的 UvrA 和 UvrB 似乎利用 DNA 损伤的滞后性,并进行 ATP 依赖性的压力测试来扭曲和分离 DNA 链。在真核核苷酸切除修复中可能进行类似的压力测试。