Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Stem Cells. 2011 Oct;29(10):1528-36. doi: 10.1002/stem.717.
Recent breakthroughs in creating induced pluripotent stem cells (iPSCs) provide alternative means to obtain embryonic stem-like cells without destroying embryos by introducing four reprogramming factors (Oct3/4, Sox2, and Klf4/c-Myc or Nanog/Lin28) into somatic cells. iPSCs are versatile tools for investigating early developmental processes and could become sources of tissues or cells for regenerative therapies. Here, for the first time, we describe a strategy to analyze genomics datasets of mouse embryonic fibroblasts (MEFs) and embryonic stem cells to identify genes constituting barriers to iPSC reprogramming. We further show that computational chemical biology combined with genomics analysis can be used to identify small molecules regulating reprogramming. Specific downregulation by small interfering RNAs (siRNAs) of several key MEF-specific genes encoding proteins with catalytic or regulatory functions, including WISP1, PRRX1, HMGA2, NFIX, PRKG2, COX2, and TGFβ3, greatly increased reprogramming efficiency. Based on this rationale, we screened only 17 small molecules in reprogramming assays and discovered that the nonsteroidal anti-inflammatory drug Nabumetone and the anticancer drug 4-hydroxytamoxifen can generate iPSCs without Sox2. Nabumetone could also produce iPSCs in the absence of c-Myc or Sox2 without compromising self-renewal and pluripotency of derived iPSCs. In summary, we report a new concept of combining genomics and computational chemical biology to identify new drugs useful for iPSC generation. This hypothesis-driven approach provides an alternative to shot-gun screening and accelerates understanding of molecular mechanisms underlying iPSC induction.
最近在诱导多能干细胞(iPSCs)的创建方面取得的突破提供了一种替代方法,可以通过将四个重编程因子(Oct3/4、Sox2、Klf4/c-Myc 或 Nanog/Lin28)引入体细胞中来获得类似于胚胎的干细胞,而无需破坏胚胎。iPSCs 是研究早期发育过程的多功能工具,并且可以成为再生疗法的组织或细胞来源。在这里,我们首次描述了一种分析小鼠胚胎成纤维细胞(MEFs)和胚胎干细胞的基因组学数据集的策略,以鉴定构成 iPSC 重编程障碍的基因。我们进一步表明,计算化学生物学与基因组学分析相结合可用于鉴定调节重编程的小分子。通过小干扰 RNA(siRNAs)特异性下调几个关键的 MEF 特异性基因,这些基因编码具有催化或调节功能的蛋白质,包括 WISP1、PRRX1、HMGA2、NFIX、PRKG2、COX2 和 TGFβ3,大大提高了重编程效率。基于这一原理,我们仅在重编程实验中筛选了 17 种小分子,并发现非甾体抗炎药 Nabumetone 和抗癌药 4-羟基他莫昔芬可以在没有 Sox2 的情况下产生 iPSCs。 Nabumetone 也可以在没有 c-Myc 或 Sox2 的情况下产生 iPSCs,而不会损害衍生 iPSCs 的自我更新和多能性。总之,我们报告了一种结合基因组学和计算化学生物学的新概念,以鉴定用于 iPSC 生成的新药。这种基于假设的方法提供了一种替代方法,可以加速对 iPSC 诱导分子机制的理解。