Department of Earth and Planetary Sciences, Washington University, St. Louis, Missouri 63130, USA.
Environ Sci Technol. 2011 Oct 15;45(20):8826-33. doi: 10.1021/es202445w. Epub 2011 Sep 16.
Biogeochemical iron cycling often generates systems where aqueous Fe(II) and solid Fe(III) oxides coexist. Reactions between these species result in iron oxide surface and phase transformations, iron isotope fractionation, and redox transformations of many contaminant species. Fe(II)-induced recrystallization of goethite and hematite has recently been shown to cause the repartitioning of Ni(II) at the mineral-water interface, with adsorbed Ni incorporating into the iron oxide structure and preincorporated Ni released back into aqueous solution. However, the effect of Fe(II) on the fate and speciation of redox inactive species incompatible with iron oxide structures is unclear. Arsenate sorption to hematite and goethite in the presence of aqueous Fe(II) was studied to determine whether Fe(II) causes substantial changes in the sorption mechanisms of such incompatible species. Sorption isotherms reveal that Fe(II) minimally alters macroscopic arsenate sorption behavior except at circumneutral pH in the presence of elevated concentrations (10⁻³ M) of Fe(II) and at high arsenate loadings, where a clear signature of precipitation is observed. Powder X-ray diffraction demonstrates that the ferrous arsenate mineral symplesite precipitates under such conditions. Extended X-ray absorption fine structure spectroscopy shows that outside this precipitation regime arsenate surface complexation mechanisms are unaffected by Fe(II). In addition, arsenate was found to suppress Fe(II) sorption through competitive adsorption processes before the onset of symplesite precipitation. This study demonstrates that the sorption of species incompatible with iron oxide structure is not substantially affected by Fe(II) but that such species may potentially interfere with Fe(II)-iron oxide reactions via competitive adsorption.
生物地球化学铁循环通常会产生同时存在水相 Fe(II) 和固相 Fe(III)氧化物的系统。这些物质之间的反应会导致氧化铁表面和相转变、铁同位素分馏以及许多污染物的氧化还原转化。最近的研究表明,Fe(II)诱导针铁矿和赤铁矿的再结晶会导致矿物-水界面处 Ni(II)的重新分配,吸附的 Ni 掺入到氧化铁结构中,而预掺入的 Ni 则释放回水溶液中。然而,Fe(II)对与氧化铁结构不兼容的氧化还原惰性物质的命运和形态的影响尚不清楚。本研究通过研究水溶液中存在 Fe(II)时砷酸盐在赤铁矿和针铁矿上的吸附,以确定 Fe(II)是否会对这些不兼容物质的吸附机制产生实质性变化。吸附等温线表明,除了在中性 pH 条件下存在高浓度(10⁻³ M)Fe(II)和高砷酸盐负载条件下,Fe(II) 对宏观砷酸盐吸附行为的影响很小,在这些条件下可以观察到明显的沉淀迹象。粉末 X 射线衍射表明,亚铁砷酸盐矿物 symplesite 在这些条件下沉淀。扩展 X 射线吸收精细结构光谱表明,在这种沉淀机制之外,砷酸盐的表面络合机制不受 Fe(II)的影响。此外,在 symplesite 沉淀开始之前,砷酸盐通过竞争吸附过程抑制 Fe(II)的吸附。本研究表明,与氧化铁结构不兼容的物质的吸附不会受到 Fe(II)的显著影响,但这些物质可能会通过竞争吸附潜在地干扰 Fe(II)-氧化铁反应。