Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1069, USA.
J Neurosci. 2011 Sep 7;31(36):12982-91. doi: 10.1523/JNEUROSCI.3093-11.2011.
The increase of cytosolic free Ca(2+) (Ca(2+)) due to NMDA receptor activation is a key step for spinal cord synaptic plasticity by altering cellular signal transduction pathways. We focus on this plasticity as a cause of persistent pain. To provide a mechanism for these classic findings, we report that Ca(2+) does not trigger synaptic plasticity directly but must first enter into mitochondria. Interfering with mitochondrial Ca(2+) uptake during a Ca(2+) increase blocks induction of behavioral hyperalgesia and accompanying downstream cell signaling, with reduction of spinal long-term potentiation (LTP). Furthermore, reducing the accompanying mitochondrial superoxide levels lessens hyperalgesia and LTP induction. These results indicate that Ca(2+) requires downstream mitochondrial Ca(2+) uptake with consequent production of reactive oxygen species (ROS) for synaptic plasticity underlying chronic pain. These results suggest modifying mitochondrial Ca(2+) uptake and thus ROS as a type of chronic pain therapy that should also have broader biologic significance.
由于 NMDA 受体激活导致细胞浆游离 Ca(2+) (Ca(2+)) 的增加,通过改变细胞信号转导途径,是脊髓突触可塑性的关键步骤。我们将这种可塑性作为持续性疼痛的原因。为了提供这些经典发现的机制,我们报告说 Ca(2+) 不能直接触发突触可塑性,而必须首先进入线粒体。在 Ca(2+) 增加期间干扰线粒体 Ca(2+)摄取会阻断行为性痛觉过敏的诱导以及伴随的下游细胞信号转导,同时减少脊髓长时程增强 (LTP)。此外,减少伴随的线粒体超氧化物水平可减轻痛觉过敏和 LTP 的诱导。这些结果表明,Ca(2+) 需要下游线粒体 Ca(2+)摄取,随后产生活性氧 (ROS),从而导致慢性疼痛下的突触可塑性。这些结果表明,改变线粒体 Ca(2+)摄取,从而改变 ROS,可以作为一种慢性疼痛治疗方法,这也应该具有更广泛的生物学意义。