Suppr超能文献

线粒体活性氧物种通过 mGluR5 被 IP3 激活,并激活 ERK 和 PKA,从而增加杏仁核神经元的兴奋性和疼痛行为。

Mitochondrial reactive oxygen species are activated by mGluR5 through IP3 and activate ERK and PKA to increase excitability of amygdala neurons and pain behavior.

机构信息

Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1069, USA.

出版信息

J Neurosci. 2011 Jan 19;31(3):1114-27. doi: 10.1523/JNEUROSCI.5387-10.2011.

Abstract

Reactive oxygen species (ROS) such as superoxide are emerging as important signaling molecules in physiological plasticity but also in peripheral and spinal cord pain pathology. Underlying mechanisms and pain-related ROS signaling in the brain remain to be determined. Neuroplasticity in the amygdala plays a key role in emotional-affective pain responses and depends on group I metabotropic glutamate receptors (mGluRs) and protein kinases. Using patch-clamp, live-cell imaging, and behavioral assays, we tested the hypothesis that mitochondrial ROS links group I mGluRs to protein kinase activation to increase neuronal excitability and pain behavior. Agonists for mGluR1/5 (DHPG) or mGluR5 (CHPG) increased neuronal excitability of neurons in the laterocapsular division of the central nucleus of the amygdala (CeLC). DHPG effects were inhibited by an mGluR5 antagonist (MTEP), IP(3) receptor blocker (xestospongin C), or ROS scavengers (PBN, tempol), but not by an mGluR1 antagonist (LY367385) or NO synthase inhibitor (l-NAME). Tempol inhibited the effects of IP(3) but not those of a PKC activator, indicating that ROS activation was IP(3) mediated. Live-cell imaging in CeLC-containing brain slices directly showed DHPG-induced and synaptically evoked mitochondrial superoxide production. DHPG also increased pain-related vocalizations and spinal reflexes through a mechanism that required mGluR5, IP(3), and ROS. Combined application of inhibitors of ERK (U0126) and PKA (KT5720) was necessary to block completely the excitatory effects of a ROS donor (tBOOH). A PKC inhibitor (GF109203X) had no effect. Antagonists and inhibitors alone did not affect neuronal excitability. The results suggest an important role for the novel mGluR5- IP(3)-ROS-ERK/PKA signaling pathway in amygdala pain mechanisms.

摘要

活性氧(ROS)如超氧自由基正在成为生理可塑性中的重要信号分子,但也存在于周围和脊髓疼痛病理学中。大脑中潜在的机制和与疼痛相关的 ROS 信号仍有待确定。杏仁核中的神经可塑性在情绪相关的疼痛反应中起着关键作用,并且依赖于 I 型代谢型谷氨酸受体(mGluRs)和蛋白激酶。使用膜片钳、活细胞成像和行为测定,我们测试了以下假设:线粒体 ROS 将 I 型 mGluR 与蛋白激酶激活联系起来,以增加神经元兴奋性和疼痛行为。mGluR1/5(DHPG)或 mGluR5(CHPG)激动剂增加了杏仁核中央核外侧区(CeLC)神经元的兴奋性。DHPG 的作用被 mGluR5 拮抗剂(MTEP)、IP3 受体阻断剂(xestospongin C)或 ROS 清除剂(PBN、tempol)抑制,但不受 mGluR1 拮抗剂(LY367385)或一氧化氮合酶抑制剂(l-NAME)的影响。Tempol 抑制了 IP3 的作用,但不抑制 PKC 激活剂的作用,这表明 ROS 激活是由 IP3 介导的。在含有 CeLC 的脑片中的活细胞成像直接显示了 DHPG 诱导和突触诱发的线粒体超氧自由基产生。DHPG 还通过一种需要 mGluR5、IP3 和 ROS 的机制增加了与疼痛相关的发声和脊髓反射。抑制剂联合应用 ERK(U0126)和 PKA(KT5720)有必要完全阻断 ROS 供体(tBOOH)的兴奋作用。PKC 抑制剂(GF109203X)没有作用。单独使用拮抗剂和抑制剂不会影响神经元兴奋性。结果表明,在杏仁核疼痛机制中,新型 mGluR5-IP3-ROS-ERK/PKA 信号通路起着重要作用。

相似文献

引用本文的文献

本文引用的文献

7
Pain modulation by nitric oxide in the spinal cord.脊髓中一氧化氮对疼痛的调节作用。
Front Neurosci. 2009 Sep 15;3(2):175-81. doi: 10.3389/neuro.01.024.2009. eCollection 2009 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验