Suppr超能文献

支架翻译:概念与临床之间的障碍。

Scaffold translation: barriers between concept and clinic.

机构信息

Scaffold Tissue Engineering Group, Department of Biomedical Engineering, The University of Michigan, Ann Arbor, Michigan 48109, USA.

出版信息

Tissue Eng Part B Rev. 2011 Dec;17(6):459-74. doi: 10.1089/ten.TEB.2011.0251. Epub 2011 Sep 21.

Abstract

Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges.

摘要

支架基骨组织工程(BTE)疗法向临床应用的转化坦率地说仍然失败了。尽管经过 25 年的研究、数亿美元的研究资金投入、过去 10 年中发表了超过 12000 篇关于 BTE 的论文和超过 2000 篇关于 BTE 支架的论文,但转化组织工程疗法(包括支架)仍然缺乏。要实现支架的转化,首先需要了解挑战,其次需要解决这些挑战的各个方面。设计、制造和功能化支架以满足骨缺损修复的形态、固定、功能和形成需求,这存在明显的技术挑战。然而,这些技术解决方案应该针对特定的临床适应症(例如,下颌骨缺损、脊柱融合、长骨缺损等)。此外,技术解决方案还应解决商业挑战,包括获得监管批准、满足特定市场需求以及获得私人投资以开发产品的需求,这些产品也针对特定的临床适应症。最后,这些商业和技术挑战呈现出与典型研究模式截然不同的模式,这给该领域在出版和资金优先事项方面带来了哲学挑战,也需要加以解决。在本文中,我们详细回顾了从概念到临床转化支架所面临的技术、商业和哲学障碍。我们认为,将支架设想为具有复杂程度滑动尺度的模块化系统,可以为解决这些转化挑战提供最佳途径。

相似文献

1
Scaffold translation: barriers between concept and clinic.
Tissue Eng Part B Rev. 2011 Dec;17(6):459-74. doi: 10.1089/ten.TEB.2011.0251. Epub 2011 Sep 21.
2
Current Biomaterial-Based Bone Tissue Engineering and Translational Medicine.
Int J Mol Sci. 2021 Sep 23;22(19):10233. doi: 10.3390/ijms221910233.
3
Review: development of clinically relevant scaffolds for vascularised bone tissue engineering.
Biotechnol Adv. 2013 Sep-Oct;31(5):688-705. doi: 10.1016/j.biotechadv.2012.10.003. Epub 2012 Nov 9.
4
Scaffold engineering: a bridge to where?
Biofabrication. 2009 Mar;1(1):012001. doi: 10.1088/1758-5082/1/1/012001. Epub 2009 Mar 20.
5
Large animal in vivo evaluation of a binary blend polymer scaffold for skeletal tissue-engineering strategies; translational issues.
J Tissue Eng Regen Med. 2017 Apr;11(4):1065-1076. doi: 10.1002/term.2007. Epub 2015 Feb 18.
6
Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models.
Acta Biomater. 2017 Oct 15;62:1-28. doi: 10.1016/j.actbio.2017.08.030. Epub 2017 Aug 24.
7
Using different unit-cell geometries to generate bone tissue scaffolds by additive manufacturing technology.
Proc Inst Mech Eng H. 2022 Jun;236(6):896-908. doi: 10.1177/09544119221099786. Epub 2022 May 20.
8
Current state of fabrication technologies and materials for bone tissue engineering.
Acta Biomater. 2018 Oct 15;80:1-30. doi: 10.1016/j.actbio.2018.09.031. Epub 2018 Sep 22.
9
Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering.
Expert Opin Drug Deliv. 2013 Oct;10(10):1353-65. doi: 10.1517/17425247.2013.808183. Epub 2013 Jun 19.
10
Personalized 3D printed bone scaffolds: A review.
Acta Biomater. 2023 Jan 15;156:110-124. doi: 10.1016/j.actbio.2022.04.014. Epub 2022 Apr 13.

引用本文的文献

1
Multi-Nozzles 3D Bioprinting Collagen/Thermoplastic Elasto-Mer Scaffold with Interconnect Pores.
Micromachines (Basel). 2025 Apr 2;16(4):429. doi: 10.3390/mi16040429.
2
Recent regulatory developments in EU Medical Device Regulation and their impact on biomaterials translation.
Bioeng Transl Med. 2024 Oct 16;10(2):e10721. doi: 10.1002/btm2.10721. eCollection 2025 Mar.
3
A versatile platform based on matrix metalloproteinase-sensitive peptides for novel diagnostic and therapeutic strategies in arthritis.
Bioact Mater. 2025 Jan 18;47:100-120. doi: 10.1016/j.bioactmat.2025.01.011. eCollection 2025 May.
4
Controlled delivery of mesenchymal stem cells via biodegradable scaffolds for fracture healing.
Nanomedicine (Lond). 2025 Jan;20(2):207-224. doi: 10.1080/17435889.2024.2439242. Epub 2024 Dec 17.
6
[Surgeons vs. scientists-Mind the gap! : Survey study on biomaterials for bone defects].
Orthopadie (Heidelb). 2024 May;53(5):361-368. doi: 10.1007/s00132-024-04492-9. Epub 2024 Apr 5.
7
Mineralized collagen scaffolds for regenerative engineering applications.
Curr Opin Biotechnol. 2024 Apr;86:103080. doi: 10.1016/j.copbio.2024.103080. Epub 2024 Feb 24.
8
Additively manufactured porous scaffolds by design for treatment of bone defects.
Front Bioeng Biotechnol. 2024 Jan 19;11:1252636. doi: 10.3389/fbioe.2023.1252636. eCollection 2023.
9
Collagen-Coated Hyperelastic Bone Promotes Osteoblast Adhesion and Proliferation.
Materials (Basel). 2023 Nov 1;16(21):6996. doi: 10.3390/ma16216996.

本文引用的文献

1
Topology Optimization of Three Dimensional Tissue Engineering Scaffold Architectures for Prescribed Bulk Modulus and Diffusivity.
Struct Multidiscipl Optim. 2010 Oct;42(4):633-644. doi: 10.1007/s00158-010-0508-8. Epub 2010 May 12.
2
Retrograde ejaculation after anterior lumbar interbody fusion using rhBMP-2: a cohort controlled study.
Spine J. 2011 Jun;11(6):511-6. doi: 10.1016/j.spinee.2011.02.013. Epub 2011 May 25.
4
Autogenous bone marrow stromal cell sheets-loaded mPCL/TCP scaffolds induced osteogenesis in a porcine model of spinal interbody fusion.
Tissue Eng Part A. 2011 Mar;17(5-6):809-17. doi: 10.1089/ten.TEA.2010.0255. Epub 2010 Dec 18.
8
A modular, hydroxyapatite-binding version of vascular endothelial growth factor.
Adv Mater. 2010 Dec 21;22(48):5494-8. doi: 10.1002/adma.201002970.
10
Scaffold design and manufacturing: from concept to clinic.
Adv Mater. 2009 Sep 4;21(32-33):3330-42. doi: 10.1002/adma.200802977.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验