Suppr超能文献

亲水残基对于核糖体蛋白 L11(RPL11)与 MDM2 的锌指结构域和 p53 蛋白的相互作用以及 p53 蛋白的激活至关重要。

Hydrophilic residues are crucial for ribosomal protein L11 (RPL11) interaction with zinc finger domain of MDM2 and p53 protein activation.

机构信息

Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-Simon Cancer Center, Indianapolis, Indiana 46032.

Department of Pathology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461.

出版信息

J Biol Chem. 2011 Nov 4;286(44):38264-38274. doi: 10.1074/jbc.M111.277012. Epub 2011 Sep 8.

Abstract

Ribosomal protein L11 (RPL11) has been shown to activate p53 by binding to MDM2 and negating its p53 suppression activity in response to ribosomal stress. Although a mutation at Cys-305 within the zinc finger domain of MDM2 has been shown to drastically impair MDM2 interaction with RPL11 and thus escapes the inhibition by this ribosomal protein, it still remains elusive whether RPL11 inactivates MDM2 via direct action on this zinc finger domain and what is the chemical nature of this specific interaction. To define the roles of the MDM2 zinc finger in association with RPL11, we conducted hydrogen-deuterium exchange mass spectrometry, computational modeling, circular dichroism, and mutational analyses of the zinc finger domain of MDM2 and human RPL11. Our study reveals that RPL11 forms a stable complex with MDM2 in vitro through direct contact with its zinc finger. This binding is disrupted by single mutations of non-cysteine amino acids within the zinc finger domain of MDM2. Basic residues in RPL11 are crucial for the stable binding and RPL11 suppression of MDM2 activity toward p53. These results provide the first line of evidence for the specific interaction between RPL11 and the zinc finger of MDM2 via hydrophilic residues as well as a molecular foundation for better understanding RPL11 inhibition of MDM2 function.

摘要

核糖体蛋白 L11(RPL11)已被证明通过与 MDM2 结合并消除其对核糖体应激的 p53 抑制活性来激活 p53。虽然已经表明 MDM2 锌指结构域内的 Cys-305 突变会严重损害 MDM2 与 RPL11 的相互作用,从而逃避这种核糖体蛋白的抑制,但仍然不清楚 RPL11 是否通过直接作用于该锌指结构域使 MDM2 失活,以及这种特定相互作用的化学性质是什么。为了确定 MDM2 锌指在与 RPL11 相关联中的作用,我们进行了氢氘交换质谱、计算建模、圆二色性和 MDM2 及人 RPL11 锌指结构域的突变分析。我们的研究表明,RPL11 通过与锌指直接接触,在体外与 MDM2 形成稳定的复合物。这种结合会被锌指结构域中 MDM2 的非半胱氨酸氨基酸的单个突变所破坏。RPL11 中的碱性残基对于稳定结合和 RPL11 抑制 MDM2 对 p53 的活性至关重要。这些结果为 RPL11 与 MDM2 的锌指之间通过亲水性残基的特异性相互作用提供了第一手证据,也为更好地理解 RPL11 抑制 MDM2 功能提供了分子基础。

相似文献

1
2
Structure of human MDM2 complexed with RPL11 reveals the molecular basis of p53 activation.
Genes Dev. 2015 Jul 15;29(14):1524-34. doi: 10.1101/gad.261792.115.
4
Putting a finger on growth surveillance: insight into MDM2 zinc finger-ribosomal protein interactions.
Cell Cycle. 2007 Feb 15;6(4):434-7. doi: 10.4161/cc.6.4.3861. Epub 2007 Feb 18.
6
GRWD1 negatively regulates p53 via the RPL11-MDM2 pathway and promotes tumorigenesis.
EMBO Rep. 2017 Jan;18(1):123-137. doi: 10.15252/embr.201642444. Epub 2016 Nov 17.
8
The RP-Mdm2-p53 pathway and tumorigenesis.
Oncotarget. 2011 Mar;2(3):234-8. doi: 10.18632/oncotarget.228.
10
Ribosomal protein RPL11 haploinsufficiency causes anemia in mice via activation of the RP-MDM2-p53 pathway.
J Biol Chem. 2023 Jan;299(1):102739. doi: 10.1016/j.jbc.2022.102739. Epub 2022 Nov 23.

引用本文的文献

2
Structure and function of MDM2 and MDM4 in health and disease.
Biochem J. 2025 Feb 17;482(4):BCJ20240757. doi: 10.1042/BCJ20240757.
4
BOP1 Knockdown Attenuates Neointimal Hyperplasia by Activating p53 and Inhibiting Nascent Protein Synthesis.
Oxid Med Cell Longev. 2021 Jan 16;2021:5986260. doi: 10.1155/2021/5986260. eCollection 2021.
5
RBM10, a New Regulator of p53.
Cells. 2020 Sep 16;9(9):2107. doi: 10.3390/cells9092107.
8
A single synonymous mutation determines the phosphorylation and stability of the nascent protein.
J Mol Cell Biol. 2019 Mar 1;11(3):187-199. doi: 10.1093/jmcb/mjy049.
9
Cancer-mutated ribosome protein L22 (RPL22/eL22) suppresses cancer cell survival by blocking p53-MDM2 circuit.
Oncotarget. 2017 Oct 6;8(53):90651-90661. doi: 10.18632/oncotarget.21544. eCollection 2017 Oct 31.
10
Mdm2 mediates FMRP- and Gp1 mGluR-dependent protein translation and neural network activity.
Hum Mol Genet. 2017 Oct 15;26(20):3895-3908. doi: 10.1093/hmg/ddx276.

本文引用的文献

1
Diamond Blackfan anemia and ribosome biogenesis: introduction.
Semin Hematol. 2011 Apr;48(2):73-4. doi: 10.1053/j.seminhematol.2011.01.003.
2
Crystal structure of the eukaryotic ribosome.
Science. 2010 Nov 26;330(6008):1203-9. doi: 10.1126/science.1194294.
3
PAK1IP1, a ribosomal stress-induced nucleolar protein, regulates cell proliferation via the p53-MDM2 loop.
Nucleic Acids Res. 2011 Mar;39(6):2234-48. doi: 10.1093/nar/gkq1117. Epub 2010 Nov 21.
4
The nucleolus under stress.
Mol Cell. 2010 Oct 22;40(2):216-27. doi: 10.1016/j.molcel.2010.09.024.
5
Depletion of ribosomal protein L37 occurs in response to DNA damage and activates p53 through the L11/MDM2 pathway.
Cell Cycle. 2010 Oct 1;9(19):4005-12. doi: 10.4161/cc.9.19.13299. Epub 2010 Oct 9.
9
Perturbation of 60 S ribosomal biogenesis results in ribosomal protein L5- and L11-dependent p53 activation.
J Biol Chem. 2010 Aug 13;285(33):25812-21. doi: 10.1074/jbc.M109.098442. Epub 2010 Jun 16.
10
Negative regulation of HDM2 to attenuate p53 degradation by ribosomal protein L26.
Nucleic Acids Res. 2010 Oct;38(19):6544-54. doi: 10.1093/nar/gkq536. Epub 2010 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验