文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

RNA-seq 中的差异表达:深度的问题。

Differential expression in RNA-seq: a matter of depth.

机构信息

Bioinformatics and Genomics Department, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain.

出版信息

Genome Res. 2011 Dec;21(12):2213-23. doi: 10.1101/gr.124321.111. Epub 2011 Sep 8.


DOI:10.1101/gr.124321.111
PMID:21903743
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3227109/
Abstract

Next-generation sequencing (NGS) technologies are revolutionizing genome research, and in particular, their application to transcriptomics (RNA-seq) is increasingly being used for gene expression profiling as a replacement for microarrays. However, the properties of RNA-seq data have not been yet fully established, and additional research is needed for understanding how these data respond to differential expression analysis. In this work, we set out to gain insights into the characteristics of RNA-seq data analysis by studying an important parameter of this technology: the sequencing depth. We have analyzed how sequencing depth affects the detection of transcripts and their identification as differentially expressed, looking at aspects such as transcript biotype, length, expression level, and fold-change. We have evaluated different algorithms available for the analysis of RNA-seq and proposed a novel approach--NOISeq--that differs from existing methods in that it is data-adaptive and nonparametric. Our results reveal that most existing methodologies suffer from a strong dependency on sequencing depth for their differential expression calls and that this results in a considerable number of false positives that increases as the number of reads grows. In contrast, our proposed method models the noise distribution from the actual data, can therefore better adapt to the size of the data set, and is more effective in controlling the rate of false discoveries. This work discusses the true potential of RNA-seq for studying regulation at low expression ranges, the noise within RNA-seq data, and the issue of replication.

摘要

下一代测序(NGS)技术正在彻底改变基因组学研究,特别是它们在转录组学(RNA-seq)中的应用,正越来越多地被用于基因表达谱分析,以替代微阵列。然而,RNA-seq 数据的特性尚未完全确定,需要进一步的研究来了解这些数据如何响应差异表达分析。在这项工作中,我们通过研究该技术的一个重要参数——测序深度,旨在深入了解 RNA-seq 数据分析的特点。我们分析了测序深度如何影响转录本的检测及其作为差异表达的识别,研究了转录本的生物类型、长度、表达水平和倍数变化等方面。我们评估了 RNA-seq 分析的不同算法,并提出了一种新的方法——NOISeq,与现有方法不同的是,它是数据自适应的和非参数的。我们的结果表明,大多数现有的方法在进行差异表达分析时,对测序深度有很强的依赖性,这导致了大量的假阳性,随着读取次数的增加而增加。相比之下,我们提出的方法从实际数据中建模噪声分布,因此可以更好地适应数据集的大小,并且在控制假发现率方面更有效。这项工作讨论了 RNA-seq 在低表达范围的调控研究中的真正潜力、RNA-seq 数据中的噪声以及复制问题。

相似文献

[1]
Differential expression in RNA-seq: a matter of depth.

Genome Res. 2011-9-8

[2]
Differential expression analysis of RNA sequencing data by incorporating non-exonic mapped reads.

BMC Genomics. 2015

[3]
Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays.

PLoS One. 2011-3-24

[4]
A systematic comparison and evaluation of high density exon arrays and RNA-seq technology used to unravel the peripheral blood transcriptome of sickle cell disease.

BMC Med Genomics. 2012-6-29

[5]
DAFS: a data-adaptive flag method for RNA-sequencing data to differentiate genes with low and high expression.

BMC Bioinformatics. 2014-3-31

[6]
A comparison of RNA-seq and exon arrays for whole genome transcription profiling of the L5 spinal nerve transection model of neuropathic pain in the rat.

Mol Pain. 2014-1-28

[7]
Sequencing transcriptomes in toto.

Integr Biol (Camb). 2011-2-4

[8]
Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl(-/-) retinal transcriptomes.

Mol Vis. 2011

[9]
Detecting differentially expressed genes by smoothing effect of gene length on variance estimation.

J Bioinform Comput Biol. 2015-12

[10]
RNA-Seq vs dual- and single-channel microarray data: sensitivity analysis for differential expression and clustering.

PLoS One. 2012-12-10

引用本文的文献

[1]
Comparison of transcriptional activity profiling by metabolic labeling or nuclear RNA sequencing.

Plant J. 2025-8

[2]
How thoughtful experimental design can empower biologists in the omics era.

Nat Commun. 2025-8-6

[3]
Passive shaping of intra- and intercellular m6A dynamics via mRNA metabolism.

Elife. 2025-6-30

[4]
Unraveling the Nectar Secretion Pathway and Floral-Specific Expression of and Genes in Five Dandelion Species Through RNA Sequencing.

Plants (Basel). 2025-6-5

[5]
scMetaIntegrator: a meta-analysis approach to paired single-cell differential expression analysis.

bioRxiv. 2025-6-8

[6]
Network Pharmacology-Based Elucidation of the Hypoglycemic Mechanism of GF5000 Polysaccharides via GCK modulation in Diabetic Rats.

Nutrients. 2025-3-10

[7]
Heterogeneity-preserving discriminative feature selection for disease-specific subtype discovery.

Nat Commun. 2025-4-16

[8]
The role of CsrA in controls the extracellular electron transfer and biofilm production in .

Front Microbiol. 2025-3-11

[9]
Associations of ANGPT2 expression and its variants (rs1868554 and rs7825407) with multiple myeloma risk and outcome.

Front Oncol. 2025-3-6

[10]
Interspecies predictions of growth traits from quantitative transcriptome data acquired during fruit development.

J Exp Bot. 2025-8-21

本文引用的文献

[1]
Analysing high-throughput sequencing data in Python with HTSeq 2.0.

Bioinformatics. 2022-5-13

[2]
Comparative and demographic analysis of orang-utan genomes.

Nature. 2011-1-27

[3]
The genome of Theobroma cacao.

Nat Genet. 2010-12-26

[4]
The developmental transcriptome of Drosophila melanogaster.

Nature. 2010-12-22

[5]
From RNA-seq reads to differential expression results.

Genome Biol. 2010-12-22

[6]
The sequence read archive.

Nucleic Acids Res. 2011-1

[7]
Ensembl 2011.

Nucleic Acids Res. 2011-1

[8]
A map of human genome variation from population-scale sequencing.

Nature. 2010-10-28

[9]
Differential expression analysis for sequence count data.

Genome Biol. 2010-10-27

[10]
Alternative expression analysis by RNA sequencing.

Nat Methods. 2010-9-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索