Suppr超能文献

相似文献

1
A system for the targeted amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor.
Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):16020-5. doi: 10.1073/pnas.1108124108. Epub 2011 Sep 8.
2
ZouA, a putative relaxase, is essential for dna amplification in Streptomyces kanamyceticus.
J Bacteriol. 2011 Apr;193(8):1815-22. doi: 10.1128/JB.01325-10. Epub 2011 Feb 4.
4
Genome-Wide Mutagenesis Links Multiple Metabolic Pathways with Actinorhodin Production in Streptomyces coelicolor.
Appl Environ Microbiol. 2019 Mar 22;85(7). doi: 10.1128/AEM.03005-18. Print 2019 Apr 1.
6
Recombinational cloning of the antibiotic biosynthetic gene clusters in linear plasmid SCP1 of Streptomyces coelicolor A3(2).
FEMS Microbiol Lett. 2013 Aug;345(1):39-48. doi: 10.1111/1574-6968.12183. Epub 2013 Jun 17.
7
Expression of an heterologous gene activating actinorhodin biosynthesis in Streptomyces lividans and Streptomyces coelicolor.
FEMS Microbiol Lett. 1994 Mar 1;116(3):301-6. doi: 10.1111/j.1574-6968.1994.tb06719.x.
10
Enhancing macrolide production in Streptomyces by coexpressing three heterologous genes.
Enzyme Microb Technol. 2012 Jan 5;50(1):5-9. doi: 10.1016/j.enzmictec.2011.09.014. Epub 2011 Oct 6.

引用本文的文献

1
Overproduction of endusamycin in subsp. .
Synth Syst Biotechnol. 2025 Feb 14;10(2):523-531. doi: 10.1016/j.synbio.2025.02.004. eCollection 2025 Jun.
2
A tunable and reversible thermo-inducible bio-switch for streptomycetes.
Nucleic Acids Res. 2025 Jan 11;53(2). doi: 10.1093/nar/gkae1236.
4
An efficient method for targeted cloning of large DNA fragments from Streptomyces.
Appl Microbiol Biotechnol. 2023 Sep;107(18):5749-5760. doi: 10.1007/s00253-023-12685-z. Epub 2023 Jul 24.
5
Improving the Yield and Quality of Daptomycin in by Multilevel Metabolic Engineering.
Front Microbiol. 2022 Apr 18;13:872397. doi: 10.3389/fmicb.2022.872397. eCollection 2022.
6
Multiscale engineering of microbial cell factories: A step forward towards sustainable natural products industry.
Synth Syst Biotechnol. 2022 Feb 1;7(1):586-601. doi: 10.1016/j.synbio.2021.12.012. eCollection 2022 Mar.
8
Biosynthetic Potential of Rationalizes Genome-Based Bioprospecting.
Antibiotics (Basel). 2021 Jul 19;10(7):873. doi: 10.3390/antibiotics10070873.
9
host for refactoring of diverse bioactive secondary metabolites.
3 Biotech. 2021 Jul;11(7):340. doi: 10.1007/s13205-021-02872-y. Epub 2021 Jun 16.
10
Use of Permanent Wall-Deficient Cells as a System for the Discovery of New-to-Nature Metabolites.
Microorganisms. 2020 Nov 30;8(12):1897. doi: 10.3390/microorganisms8121897.

本文引用的文献

1
Conjugal plasmid transfer in Streptomyces resembles bacterial chromosome segregation by FtsK/SpoIIIE.
EMBO J. 2011 Jun 1;30(11):2246-54. doi: 10.1038/emboj.2011.121. Epub 2011 Apr 19.
2
ZouA, a putative relaxase, is essential for dna amplification in Streptomyces kanamyceticus.
J Bacteriol. 2011 Apr;193(8):1815-22. doi: 10.1128/JB.01325-10. Epub 2011 Feb 4.
3
Recombinase technology: applications and possibilities.
Plant Cell Rep. 2011 Mar;30(3):267-85. doi: 10.1007/s00299-010-0938-1. Epub 2010 Oct 24.
5
Large insert environmental genomic library production.
J Vis Exp. 2009 Sep 23(31):1387. doi: 10.3791/1387.
6
Gene amplification and adaptive evolution in bacteria.
Annu Rev Genet. 2009;43:167-95. doi: 10.1146/annurev-genet-102108-134805.
7
Stabilized gene duplication enables long-term selection-free heterologous pathway expression.
Nat Biotechnol. 2009 Aug;27(8):760-5. doi: 10.1038/nbt.1555. Epub 2009 Jul 26.
8
Bacterial gene amplification: implications for the evolution of antibiotic resistance.
Nat Rev Microbiol. 2009 Aug;7(8):578-88. doi: 10.1038/nrmicro2174.
9
The diversity of conjugative relaxases and its application in plasmid classification.
FEMS Microbiol Rev. 2009 May;33(3):657-87. doi: 10.1111/j.1574-6976.2009.00168.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验