Suppr超能文献

使用马尔可夫链蒙特卡罗方法识别贝叶斯模型中的有影响观测值。

Identifying influential observations in Bayesian models by using Markov chain Monte Carlo.

机构信息

MRC Biostatistics Unit, Cambridge, UK.

出版信息

Stat Med. 2012 May 20;31(11-12):1238-48. doi: 10.1002/sim.4356. Epub 2011 Sep 8.

Abstract

In statistical modelling, it is often important to know how much parameter estimates are influenced by particular observations. An attractive approach is to re-estimate the parameters with each observation deleted in turn, but this is computationally demanding when fitting models by using Markov chain Monte Carlo (MCMC), as obtaining complete sample estimates is often in itself a very time-consuming task. Here we propose two efficient ways to approximate the case-deleted estimates by using output from MCMC estimation. Our first proposal, which directly approximates the usual influence statistics in maximum likelihood analyses of generalised linear models (GLMs), is easy to implement and avoids any further evaluation of the likelihood. Hence, unlike the existing alternatives, it does not become more computationally intensive as the model complexity increases. Our second proposal, which utilises model perturbations, also has this advantage and does not require the form of the GLM to be specified. We show how our two proposed methods are related and evaluate them against the existing method of importance sampling and case deletion in a logistic regression analysis with missing covariates. We also provide practical advice for those implementing our procedures, so that they may be used in many situations where MCMC is used to fit statistical models.

摘要

在统计建模中,了解参数估计值受特定观测值影响的程度通常很重要。一种有吸引力的方法是依次删除每个观测值来重新估计参数,但当使用马尔可夫链蒙特卡罗 (MCMC) 拟合模型时,这在计算上是很繁琐的,因为获得完整的样本估计值本身往往是一项非常耗时的任务。在这里,我们提出了两种利用 MCMC 估计输出来近似删除案例估计值的有效方法。我们的第一个建议是直接近似广义线性模型 (GLM) 最大似然分析中常用的影响统计量,它易于实现,并且避免了对似然函数的任何进一步评估。因此,与现有替代方法不同,随着模型复杂性的增加,它不会变得更加计算密集。我们的第二个建议利用模型扰动,也具有这个优势,并且不需要指定 GLM 的形式。我们展示了我们提出的两种方法之间的关系,并在带有缺失协变量的逻辑回归分析中针对现有重要抽样和案例删除方法对它们进行了评估。我们还为那些实施我们的程序的人提供了实用建议,以便在使用 MCMC 拟合统计模型的许多情况下使用它们。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b823/3500673/d4d6af003c17/sim0031-1238-f1.jpg

相似文献

1
Identifying influential observations in Bayesian models by using Markov chain Monte Carlo.
Stat Med. 2012 May 20;31(11-12):1238-48. doi: 10.1002/sim.4356. Epub 2011 Sep 8.
2
A comparison of computational algorithms for the Bayesian analysis of clinical trials.
Clin Trials. 2024 Dec;21(6):689-700. doi: 10.1177/17407745241247334. Epub 2024 May 16.
4
Invited commentary: Lost in estimation--searching for alternatives to markov chains to fit complex Bayesian models.
Am J Epidemiol. 2012 Mar 1;175(5):376-8; discussion 379-80. doi: 10.1093/aje/kwr431. Epub 2012 Feb 3.
5
Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation.
Philos Trans A Math Phys Eng Sci. 2012 Dec 31;371(1984):20110541. doi: 10.1098/rsta.2011.0541. Print 2013 Feb 13.
6
Markov chain Monte Carlo: an introduction for epidemiologists.
Int J Epidemiol. 2013 Apr;42(2):627-34. doi: 10.1093/ije/dyt043.
8
Application of the Bayesian dynamic survival model in medicine.
Stat Med. 2010 Feb 10;29(3):347-60. doi: 10.1002/sim.3795.
9
Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood.
Genetics. 2009 Aug;182(4):1207-18. doi: 10.1534/genetics.109.102509. Epub 2009 Jun 8.
10
Input estimation for drug discovery using optimal control and Markov chain Monte Carlo approaches.
J Pharmacokinet Pharmacodyn. 2016 Apr;43(2):207-21. doi: 10.1007/s10928-016-9467-z. Epub 2016 Mar 1.

引用本文的文献

本文引用的文献

1
Repeat sudden unexpected and unexplained infant deaths: natural or unnatural?
Lancet. 2005;365(9453):29-35. doi: 10.1016/S0140-6736(04)17662-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验