通过线性噪声逼近对马尔可夫跳跃过程进行马尔可夫链蒙特卡罗推断。
Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation.
机构信息
Department of Statistical Science, Centre for Computational Statistics and Machine Learning, University College London, Gower Street, London WC1E 6BT, UK.
出版信息
Philos Trans A Math Phys Eng Sci. 2012 Dec 31;371(1984):20110541. doi: 10.1098/rsta.2011.0541. Print 2013 Feb 13.
Bayesian analysis for Markov jump processes (MJPs) is a non-trivial and challenging problem. Although exact inference is theoretically possible, it is computationally demanding, thus its applicability is limited to a small class of problems. In this paper, we describe the application of Riemann manifold Markov chain Monte Carlo (MCMC) methods using an approximation to the likelihood of the MJP that is valid when the system modelled is near its thermodynamic limit. The proposed approach is both statistically and computationally efficient whereas the convergence rate and mixing of the chains allow for fast MCMC inference. The methodology is evaluated using numerical simulations on two problems from chemical kinetics and one from systems biology.
贝叶斯分析马尔可夫跳跃过程 (MJPs) 是一个复杂而具有挑战性的问题。虽然精确推断在理论上是可能的,但它的计算量很大,因此其适用性仅限于一小类问题。在本文中,我们描述了使用马尔可夫链蒙特卡罗 (MCMC) 方法的黎曼流形的应用,该方法使用了当所建模的系统接近热力学极限时有效的 MJP 似然近似。所提出的方法在统计和计算上都是有效的,而链的收敛速度和混合允许快速的 MCMC 推断。该方法学通过对来自化学动力学的两个问题和一个来自系统生物学的问题的数值模拟进行了评估。